This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of vertices of a (non-trivial) cycle is the number of edges in the cycle. (Contributed by AV, 5-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cyclnumvtx | ⊢ ( ( 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ ran 𝑃 ) = ( ♯ ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscycl | ⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 2 | pthiswlk | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 3 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 4 | 3 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 5 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 6 | elnnnn0c | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 7 | frel | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → Rel 𝑃 ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → Rel 𝑃 ) |
| 9 | fz1ssfz0 | ⊢ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) | |
| 10 | fdm | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 11 | 9 10 | sseqtrrid | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) |
| 13 | 8 12 | jca | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ) |
| 14 | 10 | 3ad2ant1 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 15 | 14 | difeq1d | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ( ( 0 ... ( ♯ ‘ 𝐹 ) ) ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 16 | nnnn0 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 17 | fz0sn0fz1 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( { 0 } ∪ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( { 0 } ∪ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 19 | 18 | difeq1d | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( 0 ... ( ♯ ‘ 𝐹 ) ) ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ( ( { 0 } ∪ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 20 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 21 | 20 | oveq1i | ⊢ ( 1 ... ( ♯ ‘ 𝐹 ) ) = ( ( 0 + 1 ) ... ( ♯ ‘ 𝐹 ) ) |
| 22 | 21 | ineq2i | ⊢ ( { 0 } ∩ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ( { 0 } ∩ ( ( 0 + 1 ) ... ( ♯ ‘ 𝐹 ) ) ) |
| 23 | 22 | a1i | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( { 0 } ∩ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ( { 0 } ∩ ( ( 0 + 1 ) ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 24 | elnn0uz | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) ) | |
| 25 | 16 24 | sylib | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 26 | fzpreddisj | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) → ( { 0 } ∩ ( ( 0 + 1 ) ... ( ♯ ‘ 𝐹 ) ) ) = ∅ ) | |
| 27 | 25 26 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( { 0 } ∩ ( ( 0 + 1 ) ... ( ♯ ‘ 𝐹 ) ) ) = ∅ ) |
| 28 | 23 27 | eqtrd | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( { 0 } ∩ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ∅ ) |
| 29 | undif5 | ⊢ ( ( { 0 } ∩ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ∅ → ( ( { 0 } ∪ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = { 0 } ) | |
| 30 | 28 29 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( { 0 } ∪ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = { 0 } ) |
| 31 | 19 30 | eqtrd | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( 0 ... ( ♯ ‘ 𝐹 ) ) ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = { 0 } ) |
| 32 | 31 | 3ad2ant2 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( 0 ... ( ♯ ‘ 𝐹 ) ) ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = { 0 } ) |
| 33 | 15 32 | eqtrd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = { 0 } ) |
| 34 | 33 | imaeq2d | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) = ( 𝑃 “ { 0 } ) ) |
| 35 | ffn | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 36 | 0elfz | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 37 | 16 36 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 38 | 35 37 | anim12i | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 39 | 38 | 3adant3 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 40 | fnsnfv | ⊢ ( ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → { ( 𝑃 ‘ 0 ) } = ( 𝑃 “ { 0 } ) ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → { ( 𝑃 ‘ 0 ) } = ( 𝑃 “ { 0 } ) ) |
| 42 | 34 41 | eqtr4d | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) = { ( 𝑃 ‘ 0 ) } ) |
| 43 | elfz1end | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ ( ♯ ‘ 𝐹 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 44 | 43 | biimpi | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ♯ ‘ 𝐹 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) |
| 45 | 44 | 3ad2ant2 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) |
| 46 | 45 | fvresd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 47 | ffun | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → Fun 𝑃 ) | |
| 48 | 47 | funresd | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → Fun ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 49 | 48 | 3ad2ant1 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → Fun ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 50 | ssdmres | ⊢ ( ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ↔ dom ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ( 1 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 51 | 12 50 | sylib | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → dom ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ( 1 ... ( ♯ ‘ 𝐹 ) ) ) |
| 52 | 45 51 | eleqtrrd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ dom ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 53 | 49 52 | jca | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( Fun ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ dom ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 54 | fvelrn | ⊢ ( ( Fun ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ dom ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ‘ ( ♯ ‘ 𝐹 ) ) ∈ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) | |
| 55 | 53 54 | syl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ‘ ( ♯ ‘ 𝐹 ) ) ∈ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 56 | 46 55 | eqeltrrd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 57 | eleq1 | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑃 ‘ 0 ) ∈ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 58 | 57 | 3ad2ant3 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 ‘ 0 ) ∈ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 59 | 56 58 | mpbird | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 0 ) ∈ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 60 | 59 | snssd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → { ( 𝑃 ‘ 0 ) } ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 61 | 42 60 | eqsstrd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 62 | 13 61 | jca | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 63 | 62 | 3exp | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) ) |
| 64 | 63 | com3l | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) ) |
| 65 | 6 64 | sylbir | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) ) |
| 66 | 65 | expcom | ⊢ ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) ) ) |
| 67 | 66 | com14 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) ) ) |
| 68 | 4 5 67 | sylc | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) ) |
| 69 | 2 68 | syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) ) |
| 70 | 69 | imp | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 71 | 1 70 | sylbi | ⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 72 | 71 | impcom | ⊢ ( ( 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 73 | imadifssran | ⊢ ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) → ( ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ran 𝑃 = ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 74 | 73 | imp | ⊢ ( ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ran 𝑃 = ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 75 | 74 | fveq2d | ⊢ ( ( ( Rel 𝑃 ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ∧ ( 𝑃 “ ( dom 𝑃 ∖ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ⊆ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ♯ ‘ ran 𝑃 ) = ( ♯ ‘ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 76 | 72 75 | syl | ⊢ ( ( 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ ran 𝑃 ) = ( ♯ ‘ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 77 | cyclispth | ⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | |
| 78 | pthdifv | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) | |
| 79 | 47 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → Fun 𝑃 ) |
| 80 | fzfid | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 ... ( ♯ ‘ 𝐹 ) ) ∈ Fin ) | |
| 81 | fnfi | ⊢ ( ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∈ Fin ) → 𝑃 ∈ Fin ) | |
| 82 | 35 80 81 | syl2anr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → 𝑃 ∈ Fin ) |
| 83 | 1eluzge0 | ⊢ 1 ∈ ( ℤ≥ ‘ 0 ) | |
| 84 | 83 | a1i | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 1 ∈ ( ℤ≥ ‘ 0 ) ) |
| 85 | fzss1 | ⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 86 | 84 85 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 87 | 86 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 88 | 10 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 89 | 87 88 | sseqtrrd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) |
| 90 | 79 82 89 | 3jca | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( Fun 𝑃 ∧ 𝑃 ∈ Fin ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ) |
| 91 | 90 | ex | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( Fun 𝑃 ∧ 𝑃 ∈ Fin ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ) ) |
| 92 | 5 4 91 | sylc | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( Fun 𝑃 ∧ 𝑃 ∈ Fin ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ) |
| 93 | 2 92 | syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( Fun 𝑃 ∧ 𝑃 ∈ Fin ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ) |
| 94 | 93 | adantr | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) → ( Fun 𝑃 ∧ 𝑃 ∈ Fin ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) ) |
| 95 | hashres | ⊢ ( ( Fun 𝑃 ∧ 𝑃 ∈ Fin ∧ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ dom 𝑃 ) → ( ♯ ‘ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) = ( ♯ ‘ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) | |
| 96 | 94 95 | syl | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) = ( ♯ ‘ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 97 | ovexd | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) → ( 1 ... ( ♯ ‘ 𝐹 ) ) ∈ V ) | |
| 98 | hashf1rn | ⊢ ( ( ( 1 ... ( ♯ ‘ 𝐹 ) ) ∈ V ∧ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) = ( ♯ ‘ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 99 | 97 98 | sylancom | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) = ( ♯ ‘ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 100 | 2 5 | syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 101 | hashfz1 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝐹 ) ) | |
| 102 | 100 101 | syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ♯ ‘ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝐹 ) ) |
| 103 | 102 | adantr | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝐹 ) ) |
| 104 | 96 99 103 | 3eqtr3d | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) = ( ♯ ‘ 𝐹 ) ) |
| 105 | 104 | ex | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) → ( ♯ ‘ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) = ( ♯ ‘ 𝐹 ) ) ) |
| 106 | 78 105 | mpd | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ♯ ‘ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) = ( ♯ ‘ 𝐹 ) ) |
| 107 | 77 106 | syl | ⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) = ( ♯ ‘ 𝐹 ) ) |
| 108 | 107 | adantl | ⊢ ( ( 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ ran ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) = ( ♯ ‘ 𝐹 ) ) |
| 109 | 76 108 | eqtrd | ⊢ ( ( 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ ran 𝑃 ) = ( ♯ ‘ 𝐹 ) ) |