This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of elements of a finite function restricted to a subset of its domain is equal to the number of elements of that subset. (Contributed by AV, 15-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashres | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` ( A |` B ) ) = ( # ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres | |- ( Fun A -> Fun ( A |` B ) ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> Fun ( A |` B ) ) |
| 3 | finresfin | |- ( A e. Fin -> ( A |` B ) e. Fin ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( A |` B ) e. Fin ) |
| 5 | hashfun | |- ( ( A |` B ) e. Fin -> ( Fun ( A |` B ) <-> ( # ` ( A |` B ) ) = ( # ` dom ( A |` B ) ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( Fun ( A |` B ) <-> ( # ` ( A |` B ) ) = ( # ` dom ( A |` B ) ) ) ) |
| 7 | 2 6 | mpbid | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` ( A |` B ) ) = ( # ` dom ( A |` B ) ) ) |
| 8 | ssdmres | |- ( B C_ dom A <-> dom ( A |` B ) = B ) |
|
| 9 | 8 | biimpi | |- ( B C_ dom A -> dom ( A |` B ) = B ) |
| 10 | 9 | 3ad2ant3 | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> dom ( A |` B ) = B ) |
| 11 | 10 | fveq2d | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` dom ( A |` B ) ) = ( # ` B ) ) |
| 12 | 7 11 | eqtrd | |- ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` ( A |` B ) ) = ( # ` B ) ) |