This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzpreddisj | |- ( N e. ( ZZ>= ` M ) -> ( { M } i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | |- ( { M } i^i ( ( M + 1 ) ... N ) ) = ( ( ( M + 1 ) ... N ) i^i { M } ) |
|
| 2 | 0lt1 | |- 0 < 1 |
|
| 3 | 0re | |- 0 e. RR |
|
| 4 | 1re | |- 1 e. RR |
|
| 5 | 3 4 | ltnlei | |- ( 0 < 1 <-> -. 1 <_ 0 ) |
| 6 | 2 5 | mpbi | |- -. 1 <_ 0 |
| 7 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 8 | 7 | zred | |- ( N e. ( ZZ>= ` M ) -> M e. RR ) |
| 9 | leaddle0 | |- ( ( M e. RR /\ 1 e. RR ) -> ( ( M + 1 ) <_ M <-> 1 <_ 0 ) ) |
|
| 10 | 8 4 9 | sylancl | |- ( N e. ( ZZ>= ` M ) -> ( ( M + 1 ) <_ M <-> 1 <_ 0 ) ) |
| 11 | 6 10 | mtbiri | |- ( N e. ( ZZ>= ` M ) -> -. ( M + 1 ) <_ M ) |
| 12 | 11 | intnanrd | |- ( N e. ( ZZ>= ` M ) -> -. ( ( M + 1 ) <_ M /\ M <_ N ) ) |
| 13 | 12 | intnand | |- ( N e. ( ZZ>= ` M ) -> -. ( ( ( M + 1 ) e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ ( ( M + 1 ) <_ M /\ M <_ N ) ) ) |
| 14 | elfz2 | |- ( M e. ( ( M + 1 ) ... N ) <-> ( ( ( M + 1 ) e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ ( ( M + 1 ) <_ M /\ M <_ N ) ) ) |
|
| 15 | 13 14 | sylnibr | |- ( N e. ( ZZ>= ` M ) -> -. M e. ( ( M + 1 ) ... N ) ) |
| 16 | disjsn | |- ( ( ( ( M + 1 ) ... N ) i^i { M } ) = (/) <-> -. M e. ( ( M + 1 ) ... N ) ) |
|
| 17 | 15 16 | sylibr | |- ( N e. ( ZZ>= ` M ) -> ( ( ( M + 1 ) ... N ) i^i { M } ) = (/) ) |
| 18 | 1 17 | eqtrid | |- ( N e. ( ZZ>= ` M ) -> ( { M } i^i ( ( M + 1 ) ... N ) ) = (/) ) |