This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvelrn | |- ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( x = A -> ( x e. dom F <-> A e. dom F ) ) |
|
| 2 | 1 | anbi2d | |- ( x = A -> ( ( Fun F /\ x e. dom F ) <-> ( Fun F /\ A e. dom F ) ) ) |
| 3 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 4 | 3 | eleq1d | |- ( x = A -> ( ( F ` x ) e. ran F <-> ( F ` A ) e. ran F ) ) |
| 5 | 2 4 | imbi12d | |- ( x = A -> ( ( ( Fun F /\ x e. dom F ) -> ( F ` x ) e. ran F ) <-> ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F ) ) ) |
| 6 | funfvop | |- ( ( Fun F /\ x e. dom F ) -> <. x , ( F ` x ) >. e. F ) |
|
| 7 | vex | |- x e. _V |
|
| 8 | opeq1 | |- ( y = x -> <. y , ( F ` x ) >. = <. x , ( F ` x ) >. ) |
|
| 9 | 8 | eleq1d | |- ( y = x -> ( <. y , ( F ` x ) >. e. F <-> <. x , ( F ` x ) >. e. F ) ) |
| 10 | 7 9 | spcev | |- ( <. x , ( F ` x ) >. e. F -> E. y <. y , ( F ` x ) >. e. F ) |
| 11 | 6 10 | syl | |- ( ( Fun F /\ x e. dom F ) -> E. y <. y , ( F ` x ) >. e. F ) |
| 12 | fvex | |- ( F ` x ) e. _V |
|
| 13 | 12 | elrn2 | |- ( ( F ` x ) e. ran F <-> E. y <. y , ( F ` x ) >. e. F ) |
| 14 | 11 13 | sylibr | |- ( ( Fun F /\ x e. dom F ) -> ( F ` x ) e. ran F ) |
| 15 | 5 14 | vtoclg | |- ( A e. dom F -> ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F ) ) |
| 16 | 15 | anabsi7 | |- ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F ) |