This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | |- V = ( Vtx ` G ) |
|
| crctcsh.i | |- I = ( iEdg ` G ) |
||
| crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
||
| crctcsh.n | |- N = ( # ` F ) |
||
| crctcsh.s | |- ( ph -> S e. ( 0 ..^ N ) ) |
||
| crctcsh.h | |- H = ( F cyclShift S ) |
||
| Assertion | crctcshlem2 | |- ( ph -> ( # ` H ) = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | |- V = ( Vtx ` G ) |
|
| 2 | crctcsh.i | |- I = ( iEdg ` G ) |
|
| 3 | crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
|
| 4 | crctcsh.n | |- N = ( # ` F ) |
|
| 5 | crctcsh.s | |- ( ph -> S e. ( 0 ..^ N ) ) |
|
| 6 | crctcsh.h | |- H = ( F cyclShift S ) |
|
| 7 | crctiswlk | |- ( F ( Circuits ` G ) P -> F ( Walks ` G ) P ) |
|
| 8 | 2 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 9 | 3 7 8 | 3syl | |- ( ph -> F e. Word dom I ) |
| 10 | elfzoelz | |- ( S e. ( 0 ..^ N ) -> S e. ZZ ) |
|
| 11 | 5 10 | syl | |- ( ph -> S e. ZZ ) |
| 12 | cshwlen | |- ( ( F e. Word dom I /\ S e. ZZ ) -> ( # ` ( F cyclShift S ) ) = ( # ` F ) ) |
|
| 13 | 9 11 12 | syl2anc | |- ( ph -> ( # ` ( F cyclShift S ) ) = ( # ` F ) ) |
| 14 | 6 | fveq2i | |- ( # ` H ) = ( # ` ( F cyclShift S ) ) |
| 15 | 13 14 4 | 3eqtr4g | |- ( ph -> ( # ` H ) = N ) |