This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | |- V = ( Vtx ` G ) |
|
| crctcsh.i | |- I = ( iEdg ` G ) |
||
| crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
||
| crctcsh.n | |- N = ( # ` F ) |
||
| crctcsh.s | |- ( ph -> S e. ( 0 ..^ N ) ) |
||
| crctcsh.h | |- H = ( F cyclShift S ) |
||
| crctcsh.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
||
| Assertion | crctcshlem3 | |- ( ph -> ( G e. _V /\ H e. _V /\ Q e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | |- V = ( Vtx ` G ) |
|
| 2 | crctcsh.i | |- I = ( iEdg ` G ) |
|
| 3 | crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
|
| 4 | crctcsh.n | |- N = ( # ` F ) |
|
| 5 | crctcsh.s | |- ( ph -> S e. ( 0 ..^ N ) ) |
|
| 6 | crctcsh.h | |- H = ( F cyclShift S ) |
|
| 7 | crctcsh.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
|
| 8 | crctistrl | |- ( F ( Circuits ` G ) P -> F ( Trails ` G ) P ) |
|
| 9 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 10 | wlkv | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
|
| 11 | simp1 | |- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> G e. _V ) |
|
| 12 | 9 10 11 | 3syl | |- ( F ( Trails ` G ) P -> G e. _V ) |
| 13 | 3 8 12 | 3syl | |- ( ph -> G e. _V ) |
| 14 | 6 | ovexi | |- H e. _V |
| 15 | 14 | a1i | |- ( ph -> H e. _V ) |
| 16 | ovex | |- ( 0 ... N ) e. _V |
|
| 17 | 16 | mptex | |- ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) e. _V |
| 18 | 7 17 | eqeltri | |- Q e. _V |
| 19 | 18 | a1i | |- ( ph -> Q e. _V ) |
| 20 | 13 15 19 | 3jca | |- ( ph -> ( G e. _V /\ H e. _V /\ Q e. _V ) ) |