This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair of functions to be/represent a walk. (Contributed by AV, 30-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wksfval.v | |- V = ( Vtx ` G ) |
|
| wksfval.i | |- I = ( iEdg ` G ) |
||
| Assertion | iswlk | |- ( ( G e. W /\ F e. U /\ P e. Z ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wksfval.v | |- V = ( Vtx ` G ) |
|
| 2 | wksfval.i | |- I = ( iEdg ` G ) |
|
| 3 | df-br | |- ( F ( Walks ` G ) P <-> <. F , P >. e. ( Walks ` G ) ) |
|
| 4 | 1 2 | wksfval | |- ( G e. W -> ( Walks ` G ) = { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } ) |
| 5 | 4 | 3ad2ant1 | |- ( ( G e. W /\ F e. U /\ P e. Z ) -> ( Walks ` G ) = { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } ) |
| 6 | 5 | eleq2d | |- ( ( G e. W /\ F e. U /\ P e. Z ) -> ( <. F , P >. e. ( Walks ` G ) <-> <. F , P >. e. { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } ) ) |
| 7 | 3 6 | bitrid | |- ( ( G e. W /\ F e. U /\ P e. Z ) -> ( F ( Walks ` G ) P <-> <. F , P >. e. { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } ) ) |
| 8 | eleq1 | |- ( f = F -> ( f e. Word dom I <-> F e. Word dom I ) ) |
|
| 9 | 8 | adantr | |- ( ( f = F /\ p = P ) -> ( f e. Word dom I <-> F e. Word dom I ) ) |
| 10 | simpr | |- ( ( f = F /\ p = P ) -> p = P ) |
|
| 11 | fveq2 | |- ( f = F -> ( # ` f ) = ( # ` F ) ) |
|
| 12 | 11 | oveq2d | |- ( f = F -> ( 0 ... ( # ` f ) ) = ( 0 ... ( # ` F ) ) ) |
| 13 | 12 | adantr | |- ( ( f = F /\ p = P ) -> ( 0 ... ( # ` f ) ) = ( 0 ... ( # ` F ) ) ) |
| 14 | 10 13 | feq12d | |- ( ( f = F /\ p = P ) -> ( p : ( 0 ... ( # ` f ) ) --> V <-> P : ( 0 ... ( # ` F ) ) --> V ) ) |
| 15 | 11 | oveq2d | |- ( f = F -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 16 | 15 | adantr | |- ( ( f = F /\ p = P ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 17 | fveq1 | |- ( p = P -> ( p ` k ) = ( P ` k ) ) |
|
| 18 | fveq1 | |- ( p = P -> ( p ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) |
|
| 19 | 17 18 | eqeq12d | |- ( p = P -> ( ( p ` k ) = ( p ` ( k + 1 ) ) <-> ( P ` k ) = ( P ` ( k + 1 ) ) ) ) |
| 20 | 19 | adantl | |- ( ( f = F /\ p = P ) -> ( ( p ` k ) = ( p ` ( k + 1 ) ) <-> ( P ` k ) = ( P ` ( k + 1 ) ) ) ) |
| 21 | fveq1 | |- ( f = F -> ( f ` k ) = ( F ` k ) ) |
|
| 22 | 21 | fveq2d | |- ( f = F -> ( I ` ( f ` k ) ) = ( I ` ( F ` k ) ) ) |
| 23 | 17 | sneqd | |- ( p = P -> { ( p ` k ) } = { ( P ` k ) } ) |
| 24 | 22 23 | eqeqan12d | |- ( ( f = F /\ p = P ) -> ( ( I ` ( f ` k ) ) = { ( p ` k ) } <-> ( I ` ( F ` k ) ) = { ( P ` k ) } ) ) |
| 25 | 17 18 | preq12d | |- ( p = P -> { ( p ` k ) , ( p ` ( k + 1 ) ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 26 | 25 | adantl | |- ( ( f = F /\ p = P ) -> { ( p ` k ) , ( p ` ( k + 1 ) ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 27 | 22 | adantr | |- ( ( f = F /\ p = P ) -> ( I ` ( f ` k ) ) = ( I ` ( F ` k ) ) ) |
| 28 | 26 27 | sseq12d | |- ( ( f = F /\ p = P ) -> ( { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 29 | 20 24 28 | ifpbi123d | |- ( ( f = F /\ p = P ) -> ( if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) <-> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 30 | 16 29 | raleqbidv | |- ( ( f = F /\ p = P ) -> ( A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) <-> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 31 | 9 14 30 | 3anbi123d | |- ( ( f = F /\ p = P ) -> ( ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 32 | 31 | opelopabga | |- ( ( F e. U /\ P e. Z ) -> ( <. F , P >. e. { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 33 | 32 | 3adant1 | |- ( ( G e. W /\ F e. U /\ P e. Z ) -> ( <. F , P >. e. { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 34 | 7 33 | bitrd | |- ( ( G e. W /\ F e. U /\ P e. Z ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |