This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coefficient vector of a scalar. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| ply1scl.a | |- A = ( algSc ` P ) |
||
| coe1scl.k | |- K = ( Base ` R ) |
||
| coe1scl.z | |- .0. = ( 0g ` R ) |
||
| Assertion | coe1scl | |- ( ( R e. Ring /\ X e. K ) -> ( coe1 ` ( A ` X ) ) = ( x e. NN0 |-> if ( x = 0 , X , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1scl.a | |- A = ( algSc ` P ) |
|
| 3 | coe1scl.k | |- K = ( Base ` R ) |
|
| 4 | coe1scl.z | |- .0. = ( 0g ` R ) |
|
| 5 | eqid | |- ( var1 ` R ) = ( var1 ` R ) |
|
| 6 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 7 | eqid | |- ( mulGrp ` P ) = ( mulGrp ` P ) |
|
| 8 | eqid | |- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
|
| 9 | 3 1 5 6 7 8 2 | ply1scltm | |- ( ( R e. Ring /\ X e. K ) -> ( A ` X ) = ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
| 10 | 9 | fveq2d | |- ( ( R e. Ring /\ X e. K ) -> ( coe1 ` ( A ` X ) ) = ( coe1 ` ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) |
| 11 | 0nn0 | |- 0 e. NN0 |
|
| 12 | 4 3 1 5 6 7 8 | coe1tm | |- ( ( R e. Ring /\ X e. K /\ 0 e. NN0 ) -> ( coe1 ` ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = ( x e. NN0 |-> if ( x = 0 , X , .0. ) ) ) |
| 13 | 11 12 | mp3an3 | |- ( ( R e. Ring /\ X e. K ) -> ( coe1 ` ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = ( x e. NN0 |-> if ( x = 0 , X , .0. ) ) ) |
| 14 | 10 13 | eqtrd | |- ( ( R e. Ring /\ X e. K ) -> ( coe1 ` ( A ` X ) ) = ( x e. NN0 |-> if ( x = 0 , X , .0. ) ) ) |