This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqcoe1ply1eq.p | |- P = ( Poly1 ` R ) |
|
| eqcoe1ply1eq.b | |- B = ( Base ` P ) |
||
| eqcoe1ply1eq.a | |- A = ( coe1 ` K ) |
||
| eqcoe1ply1eq.c | |- C = ( coe1 ` L ) |
||
| Assertion | eqcoe1ply1eq | |- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( A. k e. NN0 ( A ` k ) = ( C ` k ) -> K = L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcoe1ply1eq.p | |- P = ( Poly1 ` R ) |
|
| 2 | eqcoe1ply1eq.b | |- B = ( Base ` P ) |
|
| 3 | eqcoe1ply1eq.a | |- A = ( coe1 ` K ) |
|
| 4 | eqcoe1ply1eq.c | |- C = ( coe1 ` L ) |
|
| 5 | fveq2 | |- ( k = n -> ( A ` k ) = ( A ` n ) ) |
|
| 6 | fveq2 | |- ( k = n -> ( C ` k ) = ( C ` n ) ) |
|
| 7 | 5 6 | eqeq12d | |- ( k = n -> ( ( A ` k ) = ( C ` k ) <-> ( A ` n ) = ( C ` n ) ) ) |
| 8 | 7 | rspccv | |- ( A. k e. NN0 ( A ` k ) = ( C ` k ) -> ( n e. NN0 -> ( A ` n ) = ( C ` n ) ) ) |
| 9 | 8 | adantl | |- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) -> ( n e. NN0 -> ( A ` n ) = ( C ` n ) ) ) |
| 10 | 9 | imp | |- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) /\ n e. NN0 ) -> ( A ` n ) = ( C ` n ) ) |
| 11 | 3 | fveq1i | |- ( A ` n ) = ( ( coe1 ` K ) ` n ) |
| 12 | 4 | fveq1i | |- ( C ` n ) = ( ( coe1 ` L ) ` n ) |
| 13 | 10 11 12 | 3eqtr3g | |- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) /\ n e. NN0 ) -> ( ( coe1 ` K ) ` n ) = ( ( coe1 ` L ) ` n ) ) |
| 14 | 13 | oveq1d | |- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) /\ n e. NN0 ) -> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
| 15 | 14 | mpteq2dva | |- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) -> ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) |
| 16 | 15 | oveq2d | |- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) -> ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) |
| 17 | eqid | |- ( var1 ` R ) = ( var1 ` R ) |
|
| 18 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 19 | eqid | |- ( mulGrp ` P ) = ( mulGrp ` P ) |
|
| 20 | eqid | |- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
|
| 21 | eqid | |- ( coe1 ` K ) = ( coe1 ` K ) |
|
| 22 | 1 17 2 18 19 20 21 | ply1coe | |- ( ( R e. Ring /\ K e. B ) -> K = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) |
| 23 | 22 | 3adant3 | |- ( ( R e. Ring /\ K e. B /\ L e. B ) -> K = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) |
| 24 | eqid | |- ( coe1 ` L ) = ( coe1 ` L ) |
|
| 25 | 1 17 2 18 19 20 24 | ply1coe | |- ( ( R e. Ring /\ L e. B ) -> L = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) |
| 26 | 25 | 3adant2 | |- ( ( R e. Ring /\ K e. B /\ L e. B ) -> L = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) |
| 27 | 23 26 | eqeq12d | |- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( K = L <-> ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) ) |
| 28 | 27 | adantr | |- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) -> ( K = L <-> ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) ) |
| 29 | 16 28 | mpbird | |- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) -> K = L ) |
| 30 | 29 | ex | |- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( A. k e. NN0 ( A ` k ) = ( C ` k ) -> K = L ) ) |