This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All but the first coefficient of a constant polynomial ( i.e. a "lifted scalar") are zero. (Contributed by AV, 16-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cply1coe0.k | |- K = ( Base ` R ) |
|
| cply1coe0.0 | |- .0. = ( 0g ` R ) |
||
| cply1coe0.p | |- P = ( Poly1 ` R ) |
||
| cply1coe0.b | |- B = ( Base ` P ) |
||
| cply1coe0.a | |- A = ( algSc ` P ) |
||
| Assertion | cply1coe0 | |- ( ( R e. Ring /\ S e. K ) -> A. n e. NN ( ( coe1 ` ( A ` S ) ) ` n ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cply1coe0.k | |- K = ( Base ` R ) |
|
| 2 | cply1coe0.0 | |- .0. = ( 0g ` R ) |
|
| 3 | cply1coe0.p | |- P = ( Poly1 ` R ) |
|
| 4 | cply1coe0.b | |- B = ( Base ` P ) |
|
| 5 | cply1coe0.a | |- A = ( algSc ` P ) |
|
| 6 | 3 5 1 2 | coe1scl | |- ( ( R e. Ring /\ S e. K ) -> ( coe1 ` ( A ` S ) ) = ( k e. NN0 |-> if ( k = 0 , S , .0. ) ) ) |
| 7 | 6 | adantr | |- ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> ( coe1 ` ( A ` S ) ) = ( k e. NN0 |-> if ( k = 0 , S , .0. ) ) ) |
| 8 | nnne0 | |- ( n e. NN -> n =/= 0 ) |
|
| 9 | 8 | neneqd | |- ( n e. NN -> -. n = 0 ) |
| 10 | 9 | adantl | |- ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> -. n = 0 ) |
| 11 | 10 | adantr | |- ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> -. n = 0 ) |
| 12 | eqeq1 | |- ( k = n -> ( k = 0 <-> n = 0 ) ) |
|
| 13 | 12 | notbid | |- ( k = n -> ( -. k = 0 <-> -. n = 0 ) ) |
| 14 | 13 | adantl | |- ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> ( -. k = 0 <-> -. n = 0 ) ) |
| 15 | 11 14 | mpbird | |- ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> -. k = 0 ) |
| 16 | 15 | iffalsed | |- ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> if ( k = 0 , S , .0. ) = .0. ) |
| 17 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 18 | 17 | adantl | |- ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> n e. NN0 ) |
| 19 | 2 | fvexi | |- .0. e. _V |
| 20 | 19 | a1i | |- ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> .0. e. _V ) |
| 21 | 7 16 18 20 | fvmptd | |- ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> ( ( coe1 ` ( A ` S ) ) ` n ) = .0. ) |
| 22 | 21 | ralrimiva | |- ( ( R e. Ring /\ S e. K ) -> A. n e. NN ( ( coe1 ` ( A ` S ) ) ` n ) = .0. ) |