This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recover the base scalar from a scalar polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| ply1scl.a | |- A = ( algSc ` P ) |
||
| ply1sclid.k | |- K = ( Base ` R ) |
||
| Assertion | ply1sclid | |- ( ( R e. Ring /\ X e. K ) -> X = ( ( coe1 ` ( A ` X ) ) ` 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1scl.a | |- A = ( algSc ` P ) |
|
| 3 | ply1sclid.k | |- K = ( Base ` R ) |
|
| 4 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 5 | 1 2 3 4 | coe1scl | |- ( ( R e. Ring /\ X e. K ) -> ( coe1 ` ( A ` X ) ) = ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) ) |
| 6 | 5 | fveq1d | |- ( ( R e. Ring /\ X e. K ) -> ( ( coe1 ` ( A ` X ) ) ` 0 ) = ( ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) ` 0 ) ) |
| 7 | 0nn0 | |- 0 e. NN0 |
|
| 8 | iftrue | |- ( x = 0 -> if ( x = 0 , X , ( 0g ` R ) ) = X ) |
|
| 9 | eqid | |- ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) = ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) |
|
| 10 | 8 9 | fvmptg | |- ( ( 0 e. NN0 /\ X e. K ) -> ( ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) ` 0 ) = X ) |
| 11 | 7 10 | mpan | |- ( X e. K -> ( ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) ` 0 ) = X ) |
| 12 | 11 | adantl | |- ( ( R e. Ring /\ X e. K ) -> ( ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) ` 0 ) = X ) |
| 13 | 6 12 | eqtr2d | |- ( ( R e. Ring /\ X e. K ) -> X = ( ( coe1 ` ( A ` X ) ) ` 0 ) ) |