This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014) (Proof shortened by AV, 12-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubrg.b | |- B = ( Base ` R ) |
|
| issubrg.i | |- .1. = ( 1r ` R ) |
||
| Assertion | issubrg | |- ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ .1. e. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrg.b | |- B = ( Base ` R ) |
|
| 2 | issubrg.i | |- .1. = ( 1r ` R ) |
|
| 3 | df-subrg | |- SubRing = ( r e. Ring |-> { s e. ~P ( Base ` r ) | ( ( r |`s s ) e. Ring /\ ( 1r ` r ) e. s ) } ) |
|
| 4 | 3 | mptrcl | |- ( A e. ( SubRing ` R ) -> R e. Ring ) |
| 5 | simpll | |- ( ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ .1. e. A ) ) -> R e. Ring ) |
|
| 6 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( r = R -> ( Base ` r ) = B ) |
| 8 | 7 | pweqd | |- ( r = R -> ~P ( Base ` r ) = ~P B ) |
| 9 | oveq1 | |- ( r = R -> ( r |`s s ) = ( R |`s s ) ) |
|
| 10 | 9 | eleq1d | |- ( r = R -> ( ( r |`s s ) e. Ring <-> ( R |`s s ) e. Ring ) ) |
| 11 | fveq2 | |- ( r = R -> ( 1r ` r ) = ( 1r ` R ) ) |
|
| 12 | 11 2 | eqtr4di | |- ( r = R -> ( 1r ` r ) = .1. ) |
| 13 | 12 | eleq1d | |- ( r = R -> ( ( 1r ` r ) e. s <-> .1. e. s ) ) |
| 14 | 10 13 | anbi12d | |- ( r = R -> ( ( ( r |`s s ) e. Ring /\ ( 1r ` r ) e. s ) <-> ( ( R |`s s ) e. Ring /\ .1. e. s ) ) ) |
| 15 | 8 14 | rabeqbidv | |- ( r = R -> { s e. ~P ( Base ` r ) | ( ( r |`s s ) e. Ring /\ ( 1r ` r ) e. s ) } = { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } ) |
| 16 | 1 | fvexi | |- B e. _V |
| 17 | 16 | pwex | |- ~P B e. _V |
| 18 | 17 | rabex | |- { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } e. _V |
| 19 | 15 3 18 | fvmpt | |- ( R e. Ring -> ( SubRing ` R ) = { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } ) |
| 20 | 19 | eleq2d | |- ( R e. Ring -> ( A e. ( SubRing ` R ) <-> A e. { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } ) ) |
| 21 | oveq2 | |- ( s = A -> ( R |`s s ) = ( R |`s A ) ) |
|
| 22 | 21 | eleq1d | |- ( s = A -> ( ( R |`s s ) e. Ring <-> ( R |`s A ) e. Ring ) ) |
| 23 | eleq2 | |- ( s = A -> ( .1. e. s <-> .1. e. A ) ) |
|
| 24 | 22 23 | anbi12d | |- ( s = A -> ( ( ( R |`s s ) e. Ring /\ .1. e. s ) <-> ( ( R |`s A ) e. Ring /\ .1. e. A ) ) ) |
| 25 | 24 | elrab | |- ( A e. { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } <-> ( A e. ~P B /\ ( ( R |`s A ) e. Ring /\ .1. e. A ) ) ) |
| 26 | 16 | elpw2 | |- ( A e. ~P B <-> A C_ B ) |
| 27 | 26 | anbi1i | |- ( ( A e. ~P B /\ ( ( R |`s A ) e. Ring /\ .1. e. A ) ) <-> ( A C_ B /\ ( ( R |`s A ) e. Ring /\ .1. e. A ) ) ) |
| 28 | an12 | |- ( ( A C_ B /\ ( ( R |`s A ) e. Ring /\ .1. e. A ) ) <-> ( ( R |`s A ) e. Ring /\ ( A C_ B /\ .1. e. A ) ) ) |
|
| 29 | 25 27 28 | 3bitri | |- ( A e. { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } <-> ( ( R |`s A ) e. Ring /\ ( A C_ B /\ .1. e. A ) ) ) |
| 30 | ibar | |- ( R e. Ring -> ( ( R |`s A ) e. Ring <-> ( R e. Ring /\ ( R |`s A ) e. Ring ) ) ) |
|
| 31 | 30 | anbi1d | |- ( R e. Ring -> ( ( ( R |`s A ) e. Ring /\ ( A C_ B /\ .1. e. A ) ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ .1. e. A ) ) ) ) |
| 32 | 29 31 | bitrid | |- ( R e. Ring -> ( A e. { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ .1. e. A ) ) ) ) |
| 33 | 20 32 | bitrd | |- ( R e. Ring -> ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ .1. e. A ) ) ) ) |
| 34 | 4 5 33 | pm5.21nii | |- ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ .1. e. A ) ) ) |