This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014) (Proof shortened by AV, 7-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressbas.r | |- R = ( W |`s A ) |
|
| ressbas.b | |- B = ( Base ` W ) |
||
| Assertion | ressbas | |- ( A e. V -> ( A i^i B ) = ( Base ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | |- R = ( W |`s A ) |
|
| 2 | ressbas.b | |- B = ( Base ` W ) |
|
| 3 | simp1 | |- ( ( B C_ A /\ W e. _V /\ A e. V ) -> B C_ A ) |
|
| 4 | sseqin2 | |- ( B C_ A <-> ( A i^i B ) = B ) |
|
| 5 | 3 4 | sylib | |- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = B ) |
| 6 | 1 2 | ressid2 | |- ( ( B C_ A /\ W e. _V /\ A e. V ) -> R = W ) |
| 7 | 6 | fveq2d | |- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( Base ` R ) = ( Base ` W ) ) |
| 8 | 2 5 7 | 3eqtr4a | |- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) |
| 9 | 8 | 3expib | |- ( B C_ A -> ( ( W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) ) |
| 10 | simp2 | |- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> W e. _V ) |
|
| 11 | 2 | fvexi | |- B e. _V |
| 12 | 11 | inex2 | |- ( A i^i B ) e. _V |
| 13 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 14 | 13 | setsid | |- ( ( W e. _V /\ ( A i^i B ) e. _V ) -> ( A i^i B ) = ( Base ` ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
| 15 | 10 12 14 | sylancl | |- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
| 16 | 1 2 | ressval2 | |- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
| 17 | 16 | fveq2d | |- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( Base ` R ) = ( Base ` ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
| 18 | 15 17 | eqtr4d | |- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) |
| 19 | 18 | 3expib | |- ( -. B C_ A -> ( ( W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) ) |
| 20 | 9 19 | pm2.61i | |- ( ( W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) |
| 21 | in0 | |- ( A i^i (/) ) = (/) |
|
| 22 | fvprc | |- ( -. W e. _V -> ( Base ` W ) = (/) ) |
|
| 23 | 2 22 | eqtrid | |- ( -. W e. _V -> B = (/) ) |
| 24 | 23 | ineq2d | |- ( -. W e. _V -> ( A i^i B ) = ( A i^i (/) ) ) |
| 25 | 21 24 22 | 3eqtr4a | |- ( -. W e. _V -> ( A i^i B ) = ( Base ` W ) ) |
| 26 | base0 | |- (/) = ( Base ` (/) ) |
|
| 27 | 26 | eqcomi | |- ( Base ` (/) ) = (/) |
| 28 | reldmress | |- Rel dom |`s |
|
| 29 | 27 1 28 | oveqprc | |- ( -. W e. _V -> ( Base ` W ) = ( Base ` R ) ) |
| 30 | 25 29 | eqtrd | |- ( -. W e. _V -> ( A i^i B ) = ( Base ` R ) ) |
| 31 | 30 | adantr | |- ( ( -. W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) |
| 32 | 20 31 | pm2.61ian | |- ( A e. V -> ( A i^i B ) = ( Base ` R ) ) |