This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subg0.h | |- H = ( G |`s S ) |
|
| subg0.i | |- .0. = ( 0g ` G ) |
||
| Assertion | subg0 | |- ( S e. ( SubGrp ` G ) -> .0. = ( 0g ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subg0.h | |- H = ( G |`s S ) |
|
| 2 | subg0.i | |- .0. = ( 0g ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | 1 3 | ressplusg | |- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 5 | 4 | oveqd | |- ( S e. ( SubGrp ` G ) -> ( ( 0g ` H ) ( +g ` G ) ( 0g ` H ) ) = ( ( 0g ` H ) ( +g ` H ) ( 0g ` H ) ) ) |
| 6 | 1 | subggrp | |- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
| 7 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 8 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 9 | 7 8 | grpidcl | |- ( H e. Grp -> ( 0g ` H ) e. ( Base ` H ) ) |
| 10 | 6 9 | syl | |- ( S e. ( SubGrp ` G ) -> ( 0g ` H ) e. ( Base ` H ) ) |
| 11 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 12 | 7 11 8 | grplid | |- ( ( H e. Grp /\ ( 0g ` H ) e. ( Base ` H ) ) -> ( ( 0g ` H ) ( +g ` H ) ( 0g ` H ) ) = ( 0g ` H ) ) |
| 13 | 6 10 12 | syl2anc | |- ( S e. ( SubGrp ` G ) -> ( ( 0g ` H ) ( +g ` H ) ( 0g ` H ) ) = ( 0g ` H ) ) |
| 14 | 5 13 | eqtrd | |- ( S e. ( SubGrp ` G ) -> ( ( 0g ` H ) ( +g ` G ) ( 0g ` H ) ) = ( 0g ` H ) ) |
| 15 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 16 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 17 | 16 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 18 | 1 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 19 | 10 18 | eleqtrrd | |- ( S e. ( SubGrp ` G ) -> ( 0g ` H ) e. S ) |
| 20 | 17 19 | sseldd | |- ( S e. ( SubGrp ` G ) -> ( 0g ` H ) e. ( Base ` G ) ) |
| 21 | 16 3 2 | grpid | |- ( ( G e. Grp /\ ( 0g ` H ) e. ( Base ` G ) ) -> ( ( ( 0g ` H ) ( +g ` G ) ( 0g ` H ) ) = ( 0g ` H ) <-> .0. = ( 0g ` H ) ) ) |
| 22 | 15 20 21 | syl2anc | |- ( S e. ( SubGrp ` G ) -> ( ( ( 0g ` H ) ( +g ` G ) ( 0g ` H ) ) = ( 0g ` H ) <-> .0. = ( 0g ` H ) ) ) |
| 23 | 14 22 | mpbid | |- ( S e. ( SubGrp ` G ) -> .0. = ( 0g ` H ) ) |