This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a complex number equals its square, it must be 0 or 1. (Contributed by NM, 6-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sq01 | |- ( A e. CC -> ( ( A ^ 2 ) = A <-> ( A = 0 \/ A = 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | |- ( A =/= 0 <-> -. A = 0 ) |
|
| 2 | sqval | |- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
|
| 3 | mulrid | |- ( A e. CC -> ( A x. 1 ) = A ) |
|
| 4 | 3 | eqcomd | |- ( A e. CC -> A = ( A x. 1 ) ) |
| 5 | 2 4 | eqeq12d | |- ( A e. CC -> ( ( A ^ 2 ) = A <-> ( A x. A ) = ( A x. 1 ) ) ) |
| 6 | 5 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) = A <-> ( A x. A ) = ( A x. 1 ) ) ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | mulcan | |- ( ( A e. CC /\ 1 e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. A ) = ( A x. 1 ) <-> A = 1 ) ) |
|
| 9 | 7 8 | mp3an2 | |- ( ( A e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. A ) = ( A x. 1 ) <-> A = 1 ) ) |
| 10 | 9 | anabss5 | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. A ) = ( A x. 1 ) <-> A = 1 ) ) |
| 11 | 6 10 | bitrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) = A <-> A = 1 ) ) |
| 12 | 11 | biimpd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) = A -> A = 1 ) ) |
| 13 | 12 | impancom | |- ( ( A e. CC /\ ( A ^ 2 ) = A ) -> ( A =/= 0 -> A = 1 ) ) |
| 14 | 1 13 | biimtrrid | |- ( ( A e. CC /\ ( A ^ 2 ) = A ) -> ( -. A = 0 -> A = 1 ) ) |
| 15 | 14 | orrd | |- ( ( A e. CC /\ ( A ^ 2 ) = A ) -> ( A = 0 \/ A = 1 ) ) |
| 16 | 15 | ex | |- ( A e. CC -> ( ( A ^ 2 ) = A -> ( A = 0 \/ A = 1 ) ) ) |
| 17 | sq0 | |- ( 0 ^ 2 ) = 0 |
|
| 18 | oveq1 | |- ( A = 0 -> ( A ^ 2 ) = ( 0 ^ 2 ) ) |
|
| 19 | id | |- ( A = 0 -> A = 0 ) |
|
| 20 | 17 18 19 | 3eqtr4a | |- ( A = 0 -> ( A ^ 2 ) = A ) |
| 21 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 22 | oveq1 | |- ( A = 1 -> ( A ^ 2 ) = ( 1 ^ 2 ) ) |
|
| 23 | id | |- ( A = 1 -> A = 1 ) |
|
| 24 | 21 22 23 | 3eqtr4a | |- ( A = 1 -> ( A ^ 2 ) = A ) |
| 25 | 20 24 | jaoi | |- ( ( A = 0 \/ A = 1 ) -> ( A ^ 2 ) = A ) |
| 26 | 16 25 | impbid1 | |- ( A e. CC -> ( ( A ^ 2 ) = A <-> ( A = 0 \/ A = 1 ) ) ) |