This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A division ring's unity is different from its zero. (Contributed by NM, 8-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngunz.z | |- .0. = ( 0g ` R ) |
|
| drngunz.u | |- .1. = ( 1r ` R ) |
||
| Assertion | drngunz | |- ( R e. DivRing -> .1. =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngunz.z | |- .0. = ( 0g ` R ) |
|
| 2 | drngunz.u | |- .1. = ( 1r ` R ) |
|
| 3 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 4 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 5 | 4 2 | 1unit | |- ( R e. Ring -> .1. e. ( Unit ` R ) ) |
| 6 | 3 5 | syl | |- ( R e. DivRing -> .1. e. ( Unit ` R ) ) |
| 7 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 8 | 7 4 1 | drngunit | |- ( R e. DivRing -> ( .1. e. ( Unit ` R ) <-> ( .1. e. ( Base ` R ) /\ .1. =/= .0. ) ) ) |
| 9 | 6 8 | mpbid | |- ( R e. DivRing -> ( .1. e. ( Base ` R ) /\ .1. =/= .0. ) ) |
| 10 | 9 | simprd | |- ( R e. DivRing -> .1. =/= .0. ) |