This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ressid.1 | |- B = ( Base ` W ) |
|
| Assertion | ressinbas | |- ( A e. X -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressid.1 | |- B = ( Base ` W ) |
|
| 2 | elex | |- ( A e. X -> A e. _V ) |
|
| 3 | eqid | |- ( W |`s A ) = ( W |`s A ) |
|
| 4 | 3 1 | ressid2 | |- ( ( B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s A ) = W ) |
| 5 | ssid | |- B C_ B |
|
| 6 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
| 7 | dfss2 | |- ( B C_ A <-> ( B i^i A ) = B ) |
|
| 8 | 7 | biimpi | |- ( B C_ A -> ( B i^i A ) = B ) |
| 9 | 6 8 | eqtrid | |- ( B C_ A -> ( A i^i B ) = B ) |
| 10 | 5 9 | sseqtrrid | |- ( B C_ A -> B C_ ( A i^i B ) ) |
| 11 | elex | |- ( W e. _V -> W e. _V ) |
|
| 12 | inex1g | |- ( A e. _V -> ( A i^i B ) e. _V ) |
|
| 13 | eqid | |- ( W |`s ( A i^i B ) ) = ( W |`s ( A i^i B ) ) |
|
| 14 | 13 1 | ressid2 | |- ( ( B C_ ( A i^i B ) /\ W e. _V /\ ( A i^i B ) e. _V ) -> ( W |`s ( A i^i B ) ) = W ) |
| 15 | 10 11 12 14 | syl3an | |- ( ( B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s ( A i^i B ) ) = W ) |
| 16 | 4 15 | eqtr4d | |- ( ( B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
| 17 | 16 | 3expb | |- ( ( B C_ A /\ ( W e. _V /\ A e. _V ) ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
| 18 | inass | |- ( ( A i^i B ) i^i B ) = ( A i^i ( B i^i B ) ) |
|
| 19 | inidm | |- ( B i^i B ) = B |
|
| 20 | 19 | ineq2i | |- ( A i^i ( B i^i B ) ) = ( A i^i B ) |
| 21 | 18 20 | eqtr2i | |- ( A i^i B ) = ( ( A i^i B ) i^i B ) |
| 22 | 21 | opeq2i | |- <. ( Base ` ndx ) , ( A i^i B ) >. = <. ( Base ` ndx ) , ( ( A i^i B ) i^i B ) >. |
| 23 | 22 | oveq2i | |- ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i B ) >. ) |
| 24 | 3 1 | ressval2 | |- ( ( -. B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s A ) = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
| 25 | inss1 | |- ( A i^i B ) C_ A |
|
| 26 | sstr | |- ( ( B C_ ( A i^i B ) /\ ( A i^i B ) C_ A ) -> B C_ A ) |
|
| 27 | 25 26 | mpan2 | |- ( B C_ ( A i^i B ) -> B C_ A ) |
| 28 | 27 | con3i | |- ( -. B C_ A -> -. B C_ ( A i^i B ) ) |
| 29 | 13 1 | ressval2 | |- ( ( -. B C_ ( A i^i B ) /\ W e. _V /\ ( A i^i B ) e. _V ) -> ( W |`s ( A i^i B ) ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i B ) >. ) ) |
| 30 | 28 11 12 29 | syl3an | |- ( ( -. B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s ( A i^i B ) ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i B ) >. ) ) |
| 31 | 23 24 30 | 3eqtr4a | |- ( ( -. B C_ A /\ W e. _V /\ A e. _V ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
| 32 | 31 | 3expb | |- ( ( -. B C_ A /\ ( W e. _V /\ A e. _V ) ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
| 33 | 17 32 | pm2.61ian | |- ( ( W e. _V /\ A e. _V ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
| 34 | reldmress | |- Rel dom |`s |
|
| 35 | 34 | ovprc1 | |- ( -. W e. _V -> ( W |`s A ) = (/) ) |
| 36 | 34 | ovprc1 | |- ( -. W e. _V -> ( W |`s ( A i^i B ) ) = (/) ) |
| 37 | 35 36 | eqtr4d | |- ( -. W e. _V -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
| 38 | 37 | adantr | |- ( ( -. W e. _V /\ A e. _V ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
| 39 | 33 38 | pm2.61ian | |- ( A e. _V -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
| 40 | 2 39 | syl | |- ( A e. X -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |