This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1tm.z | |- .0. = ( 0g ` R ) |
|
| coe1tm.k | |- K = ( Base ` R ) |
||
| coe1tm.p | |- P = ( Poly1 ` R ) |
||
| coe1tm.x | |- X = ( var1 ` R ) |
||
| coe1tm.m | |- .x. = ( .s ` P ) |
||
| coe1tm.n | |- N = ( mulGrp ` P ) |
||
| coe1tm.e | |- .^ = ( .g ` N ) |
||
| coe1tmmul.b | |- B = ( Base ` P ) |
||
| coe1tmmul.t | |- .xb = ( .r ` P ) |
||
| coe1tmmul.u | |- .X. = ( .r ` R ) |
||
| coe1tmmul.a | |- ( ph -> A e. B ) |
||
| coe1tmmul.r | |- ( ph -> R e. Ring ) |
||
| coe1tmmul.c | |- ( ph -> C e. K ) |
||
| coe1tmmul.d | |- ( ph -> D e. NN0 ) |
||
| Assertion | coe1tmmul | |- ( ph -> ( coe1 ` ( ( C .x. ( D .^ X ) ) .xb A ) ) = ( x e. NN0 |-> if ( D <_ x , ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | |- .0. = ( 0g ` R ) |
|
| 2 | coe1tm.k | |- K = ( Base ` R ) |
|
| 3 | coe1tm.p | |- P = ( Poly1 ` R ) |
|
| 4 | coe1tm.x | |- X = ( var1 ` R ) |
|
| 5 | coe1tm.m | |- .x. = ( .s ` P ) |
|
| 6 | coe1tm.n | |- N = ( mulGrp ` P ) |
|
| 7 | coe1tm.e | |- .^ = ( .g ` N ) |
|
| 8 | coe1tmmul.b | |- B = ( Base ` P ) |
|
| 9 | coe1tmmul.t | |- .xb = ( .r ` P ) |
|
| 10 | coe1tmmul.u | |- .X. = ( .r ` R ) |
|
| 11 | coe1tmmul.a | |- ( ph -> A e. B ) |
|
| 12 | coe1tmmul.r | |- ( ph -> R e. Ring ) |
|
| 13 | coe1tmmul.c | |- ( ph -> C e. K ) |
|
| 14 | coe1tmmul.d | |- ( ph -> D e. NN0 ) |
|
| 15 | 2 3 4 5 6 7 8 | ply1tmcl | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( C .x. ( D .^ X ) ) e. B ) |
| 16 | 12 13 14 15 | syl3anc | |- ( ph -> ( C .x. ( D .^ X ) ) e. B ) |
| 17 | 3 9 10 8 | coe1mul | |- ( ( R e. Ring /\ ( C .x. ( D .^ X ) ) e. B /\ A e. B ) -> ( coe1 ` ( ( C .x. ( D .^ X ) ) .xb A ) ) = ( x e. NN0 |-> ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) ) ) |
| 18 | 12 16 11 17 | syl3anc | |- ( ph -> ( coe1 ` ( ( C .x. ( D .^ X ) ) .xb A ) ) = ( x e. NN0 |-> ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) ) ) |
| 19 | eqeq2 | |- ( ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) = if ( D <_ x , ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) -> ( ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) = ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) <-> ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) = if ( D <_ x , ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) ) ) |
|
| 20 | eqeq2 | |- ( .0. = if ( D <_ x , ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) -> ( ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) = .0. <-> ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) = if ( D <_ x , ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) ) ) |
|
| 21 | 12 | ad2antrr | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> R e. Ring ) |
| 22 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 23 | 21 22 | syl | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> R e. Mnd ) |
| 24 | ovexd | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( 0 ... x ) e. _V ) |
|
| 25 | 14 | ad2antrr | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> D e. NN0 ) |
| 26 | simpr | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> D <_ x ) |
|
| 27 | fznn0 | |- ( x e. NN0 -> ( D e. ( 0 ... x ) <-> ( D e. NN0 /\ D <_ x ) ) ) |
|
| 28 | 27 | ad2antlr | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( D e. ( 0 ... x ) <-> ( D e. NN0 /\ D <_ x ) ) ) |
| 29 | 25 26 28 | mpbir2and | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> D e. ( 0 ... x ) ) |
| 30 | 12 | ad2antrr | |- ( ( ( ph /\ x e. NN0 ) /\ y e. ( 0 ... x ) ) -> R e. Ring ) |
| 31 | eqid | |- ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( coe1 ` ( C .x. ( D .^ X ) ) ) |
|
| 32 | 31 8 3 2 | coe1f | |- ( ( C .x. ( D .^ X ) ) e. B -> ( coe1 ` ( C .x. ( D .^ X ) ) ) : NN0 --> K ) |
| 33 | 16 32 | syl | |- ( ph -> ( coe1 ` ( C .x. ( D .^ X ) ) ) : NN0 --> K ) |
| 34 | 33 | adantr | |- ( ( ph /\ x e. NN0 ) -> ( coe1 ` ( C .x. ( D .^ X ) ) ) : NN0 --> K ) |
| 35 | elfznn0 | |- ( y e. ( 0 ... x ) -> y e. NN0 ) |
|
| 36 | ffvelcdm | |- ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) : NN0 --> K /\ y e. NN0 ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) e. K ) |
|
| 37 | 34 35 36 | syl2an | |- ( ( ( ph /\ x e. NN0 ) /\ y e. ( 0 ... x ) ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) e. K ) |
| 38 | eqid | |- ( coe1 ` A ) = ( coe1 ` A ) |
|
| 39 | 38 8 3 2 | coe1f | |- ( A e. B -> ( coe1 ` A ) : NN0 --> K ) |
| 40 | 11 39 | syl | |- ( ph -> ( coe1 ` A ) : NN0 --> K ) |
| 41 | 40 | adantr | |- ( ( ph /\ x e. NN0 ) -> ( coe1 ` A ) : NN0 --> K ) |
| 42 | fznn0sub | |- ( y e. ( 0 ... x ) -> ( x - y ) e. NN0 ) |
|
| 43 | ffvelcdm | |- ( ( ( coe1 ` A ) : NN0 --> K /\ ( x - y ) e. NN0 ) -> ( ( coe1 ` A ) ` ( x - y ) ) e. K ) |
|
| 44 | 41 42 43 | syl2an | |- ( ( ( ph /\ x e. NN0 ) /\ y e. ( 0 ... x ) ) -> ( ( coe1 ` A ) ` ( x - y ) ) e. K ) |
| 45 | 2 10 | ringcl | |- ( ( R e. Ring /\ ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) e. K /\ ( ( coe1 ` A ) ` ( x - y ) ) e. K ) -> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) e. K ) |
| 46 | 30 37 44 45 | syl3anc | |- ( ( ( ph /\ x e. NN0 ) /\ y e. ( 0 ... x ) ) -> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) e. K ) |
| 47 | 46 | fmpttd | |- ( ( ph /\ x e. NN0 ) -> ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) : ( 0 ... x ) --> K ) |
| 48 | 47 | adantr | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) : ( 0 ... x ) --> K ) |
| 49 | 12 | ad3antrrr | |- ( ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) /\ y e. ( ( 0 ... x ) \ { D } ) ) -> R e. Ring ) |
| 50 | 13 | ad3antrrr | |- ( ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) /\ y e. ( ( 0 ... x ) \ { D } ) ) -> C e. K ) |
| 51 | 14 | ad3antrrr | |- ( ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) /\ y e. ( ( 0 ... x ) \ { D } ) ) -> D e. NN0 ) |
| 52 | eldifi | |- ( y e. ( ( 0 ... x ) \ { D } ) -> y e. ( 0 ... x ) ) |
|
| 53 | 52 35 | syl | |- ( y e. ( ( 0 ... x ) \ { D } ) -> y e. NN0 ) |
| 54 | 53 | adantl | |- ( ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) /\ y e. ( ( 0 ... x ) \ { D } ) ) -> y e. NN0 ) |
| 55 | eldifsni | |- ( y e. ( ( 0 ... x ) \ { D } ) -> y =/= D ) |
|
| 56 | 55 | necomd | |- ( y e. ( ( 0 ... x ) \ { D } ) -> D =/= y ) |
| 57 | 56 | adantl | |- ( ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) /\ y e. ( ( 0 ... x ) \ { D } ) ) -> D =/= y ) |
| 58 | 1 2 3 4 5 6 7 49 50 51 54 57 | coe1tmfv2 | |- ( ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) /\ y e. ( ( 0 ... x ) \ { D } ) ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) = .0. ) |
| 59 | 58 | oveq1d | |- ( ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) /\ y e. ( ( 0 ... x ) \ { D } ) ) -> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) = ( .0. .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) |
| 60 | 2 10 1 | ringlz | |- ( ( R e. Ring /\ ( ( coe1 ` A ) ` ( x - y ) ) e. K ) -> ( .0. .X. ( ( coe1 ` A ) ` ( x - y ) ) ) = .0. ) |
| 61 | 30 44 60 | syl2anc | |- ( ( ( ph /\ x e. NN0 ) /\ y e. ( 0 ... x ) ) -> ( .0. .X. ( ( coe1 ` A ) ` ( x - y ) ) ) = .0. ) |
| 62 | 52 61 | sylan2 | |- ( ( ( ph /\ x e. NN0 ) /\ y e. ( ( 0 ... x ) \ { D } ) ) -> ( .0. .X. ( ( coe1 ` A ) ` ( x - y ) ) ) = .0. ) |
| 63 | 62 | adantlr | |- ( ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) /\ y e. ( ( 0 ... x ) \ { D } ) ) -> ( .0. .X. ( ( coe1 ` A ) ` ( x - y ) ) ) = .0. ) |
| 64 | 59 63 | eqtrd | |- ( ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) /\ y e. ( ( 0 ... x ) \ { D } ) ) -> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) = .0. ) |
| 65 | 64 24 | suppss2 | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) supp .0. ) C_ { D } ) |
| 66 | 2 1 23 24 29 48 65 | gsumpt | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) = ( ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ` D ) ) |
| 67 | fveq2 | |- ( y = D -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) = ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) ) |
|
| 68 | oveq2 | |- ( y = D -> ( x - y ) = ( x - D ) ) |
|
| 69 | 68 | fveq2d | |- ( y = D -> ( ( coe1 ` A ) ` ( x - y ) ) = ( ( coe1 ` A ) ` ( x - D ) ) ) |
| 70 | 67 69 | oveq12d | |- ( y = D -> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) = ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) .X. ( ( coe1 ` A ) ` ( x - D ) ) ) ) |
| 71 | eqid | |- ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) = ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) |
|
| 72 | ovex | |- ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) .X. ( ( coe1 ` A ) ` ( x - D ) ) ) e. _V |
|
| 73 | 70 71 72 | fvmpt | |- ( D e. ( 0 ... x ) -> ( ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ` D ) = ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) .X. ( ( coe1 ` A ) ` ( x - D ) ) ) ) |
| 74 | 29 73 | syl | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ` D ) = ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) .X. ( ( coe1 ` A ) ` ( x - D ) ) ) ) |
| 75 | 1 2 3 4 5 6 7 | coe1tmfv1 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) = C ) |
| 76 | 12 13 14 75 | syl3anc | |- ( ph -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) = C ) |
| 77 | 76 | ad2antrr | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) = C ) |
| 78 | 77 | oveq1d | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) .X. ( ( coe1 ` A ) ` ( x - D ) ) ) = ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) ) |
| 79 | 74 78 | eqtrd | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ` D ) = ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) ) |
| 80 | 66 79 | eqtrd | |- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) = ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) ) |
| 81 | 12 | ad3antrrr | |- ( ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) /\ y e. ( 0 ... x ) ) -> R e. Ring ) |
| 82 | 13 | ad3antrrr | |- ( ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) /\ y e. ( 0 ... x ) ) -> C e. K ) |
| 83 | 14 | ad3antrrr | |- ( ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) /\ y e. ( 0 ... x ) ) -> D e. NN0 ) |
| 84 | 35 | adantl | |- ( ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) /\ y e. ( 0 ... x ) ) -> y e. NN0 ) |
| 85 | elfzle2 | |- ( y e. ( 0 ... x ) -> y <_ x ) |
|
| 86 | 85 | adantl | |- ( ( ( ph /\ x e. NN0 ) /\ y e. ( 0 ... x ) ) -> y <_ x ) |
| 87 | breq1 | |- ( D = y -> ( D <_ x <-> y <_ x ) ) |
|
| 88 | 86 87 | syl5ibrcom | |- ( ( ( ph /\ x e. NN0 ) /\ y e. ( 0 ... x ) ) -> ( D = y -> D <_ x ) ) |
| 89 | 88 | necon3bd | |- ( ( ( ph /\ x e. NN0 ) /\ y e. ( 0 ... x ) ) -> ( -. D <_ x -> D =/= y ) ) |
| 90 | 89 | imp | |- ( ( ( ( ph /\ x e. NN0 ) /\ y e. ( 0 ... x ) ) /\ -. D <_ x ) -> D =/= y ) |
| 91 | 90 | an32s | |- ( ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) /\ y e. ( 0 ... x ) ) -> D =/= y ) |
| 92 | 1 2 3 4 5 6 7 81 82 83 84 91 | coe1tmfv2 | |- ( ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) /\ y e. ( 0 ... x ) ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) = .0. ) |
| 93 | 92 | oveq1d | |- ( ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) /\ y e. ( 0 ... x ) ) -> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) = ( .0. .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) |
| 94 | 61 | adantlr | |- ( ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) /\ y e. ( 0 ... x ) ) -> ( .0. .X. ( ( coe1 ` A ) ` ( x - y ) ) ) = .0. ) |
| 95 | 93 94 | eqtrd | |- ( ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) /\ y e. ( 0 ... x ) ) -> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) = .0. ) |
| 96 | 95 | mpteq2dva | |- ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) -> ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) = ( y e. ( 0 ... x ) |-> .0. ) ) |
| 97 | 96 | oveq2d | |- ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) -> ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) = ( R gsum ( y e. ( 0 ... x ) |-> .0. ) ) ) |
| 98 | 12 22 | syl | |- ( ph -> R e. Mnd ) |
| 99 | 98 | ad2antrr | |- ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) -> R e. Mnd ) |
| 100 | ovexd | |- ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) -> ( 0 ... x ) e. _V ) |
|
| 101 | 1 | gsumz | |- ( ( R e. Mnd /\ ( 0 ... x ) e. _V ) -> ( R gsum ( y e. ( 0 ... x ) |-> .0. ) ) = .0. ) |
| 102 | 99 100 101 | syl2anc | |- ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) -> ( R gsum ( y e. ( 0 ... x ) |-> .0. ) ) = .0. ) |
| 103 | 97 102 | eqtrd | |- ( ( ( ph /\ x e. NN0 ) /\ -. D <_ x ) -> ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) = .0. ) |
| 104 | 19 20 80 103 | ifbothda | |- ( ( ph /\ x e. NN0 ) -> ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) = if ( D <_ x , ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) ) |
| 105 | 104 | mpteq2dva | |- ( ph -> ( x e. NN0 |-> ( R gsum ( y e. ( 0 ... x ) |-> ( ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` y ) .X. ( ( coe1 ` A ) ` ( x - y ) ) ) ) ) ) = ( x e. NN0 |-> if ( D <_ x , ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) ) ) |
| 106 | 18 105 | eqtrd | |- ( ph -> ( coe1 ` ( ( C .x. ( D .^ X ) ) .xb A ) ) = ( x e. NN0 |-> if ( D <_ x , ( C .X. ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) ) ) |