This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coefficient vector of multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1mul.s | |- Y = ( Poly1 ` R ) |
|
| coe1mul.t | |- .xb = ( .r ` Y ) |
||
| coe1mul.u | |- .x. = ( .r ` R ) |
||
| coe1mul.b | |- B = ( Base ` Y ) |
||
| Assertion | coe1mul | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .xb G ) ) = ( k e. NN0 |-> ( R gsum ( x e. ( 0 ... k ) |-> ( ( ( coe1 ` F ) ` x ) .x. ( ( coe1 ` G ) ` ( k - x ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1mul.s | |- Y = ( Poly1 ` R ) |
|
| 2 | coe1mul.t | |- .xb = ( .r ` Y ) |
|
| 3 | coe1mul.u | |- .x. = ( .r ` R ) |
|
| 4 | coe1mul.b | |- B = ( Base ` Y ) |
|
| 5 | id | |- ( R e. Ring -> R e. Ring ) |
|
| 6 | 1 4 | ply1bascl | |- ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) ) |
| 7 | 1 4 | ply1bascl | |- ( G e. B -> G e. ( Base ` ( PwSer1 ` R ) ) ) |
| 8 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
| 9 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 10 | eqid | |- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
|
| 11 | 1 9 2 | ply1mulr | |- .xb = ( .r ` ( 1o mPoly R ) ) |
| 12 | 9 10 11 | mplmulr | |- .xb = ( .r ` ( 1o mPwSer R ) ) |
| 13 | eqid | |- ( .r ` ( PwSer1 ` R ) ) = ( .r ` ( PwSer1 ` R ) ) |
|
| 14 | 8 10 13 | psr1mulr | |- ( .r ` ( PwSer1 ` R ) ) = ( .r ` ( 1o mPwSer R ) ) |
| 15 | 12 14 | eqtr4i | |- .xb = ( .r ` ( PwSer1 ` R ) ) |
| 16 | eqid | |- ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) |
|
| 17 | 8 15 3 16 | coe1mul2 | |- ( ( R e. Ring /\ F e. ( Base ` ( PwSer1 ` R ) ) /\ G e. ( Base ` ( PwSer1 ` R ) ) ) -> ( coe1 ` ( F .xb G ) ) = ( k e. NN0 |-> ( R gsum ( x e. ( 0 ... k ) |-> ( ( ( coe1 ` F ) ` x ) .x. ( ( coe1 ` G ) ` ( k - x ) ) ) ) ) ) ) |
| 18 | 5 6 7 17 | syl3an | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .xb G ) ) = ( k e. NN0 |-> ( R gsum ( x e. ( 0 ... k ) |-> ( ( ( coe1 ` F ) ` x ) .x. ( ( coe1 ` G ) ` ( k - x ) ) ) ) ) ) ) |