This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of a right-multiplication by a term in the shifted domain. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1tm.z | |- .0. = ( 0g ` R ) |
|
| coe1tm.k | |- K = ( Base ` R ) |
||
| coe1tm.p | |- P = ( Poly1 ` R ) |
||
| coe1tm.x | |- X = ( var1 ` R ) |
||
| coe1tm.m | |- .x. = ( .s ` P ) |
||
| coe1tm.n | |- N = ( mulGrp ` P ) |
||
| coe1tm.e | |- .^ = ( .g ` N ) |
||
| coe1tmmul.b | |- B = ( Base ` P ) |
||
| coe1tmmul.t | |- .xb = ( .r ` P ) |
||
| coe1tmmul.u | |- .X. = ( .r ` R ) |
||
| coe1tmmul.a | |- ( ph -> A e. B ) |
||
| coe1tmmul.r | |- ( ph -> R e. Ring ) |
||
| coe1tmmul.c | |- ( ph -> C e. K ) |
||
| coe1tmmul.d | |- ( ph -> D e. NN0 ) |
||
| coe1tmmul2fv.y | |- ( ph -> Y e. NN0 ) |
||
| Assertion | coe1tmmul2fv | |- ( ph -> ( ( coe1 ` ( A .xb ( C .x. ( D .^ X ) ) ) ) ` ( D + Y ) ) = ( ( ( coe1 ` A ) ` Y ) .X. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | |- .0. = ( 0g ` R ) |
|
| 2 | coe1tm.k | |- K = ( Base ` R ) |
|
| 3 | coe1tm.p | |- P = ( Poly1 ` R ) |
|
| 4 | coe1tm.x | |- X = ( var1 ` R ) |
|
| 5 | coe1tm.m | |- .x. = ( .s ` P ) |
|
| 6 | coe1tm.n | |- N = ( mulGrp ` P ) |
|
| 7 | coe1tm.e | |- .^ = ( .g ` N ) |
|
| 8 | coe1tmmul.b | |- B = ( Base ` P ) |
|
| 9 | coe1tmmul.t | |- .xb = ( .r ` P ) |
|
| 10 | coe1tmmul.u | |- .X. = ( .r ` R ) |
|
| 11 | coe1tmmul.a | |- ( ph -> A e. B ) |
|
| 12 | coe1tmmul.r | |- ( ph -> R e. Ring ) |
|
| 13 | coe1tmmul.c | |- ( ph -> C e. K ) |
|
| 14 | coe1tmmul.d | |- ( ph -> D e. NN0 ) |
|
| 15 | coe1tmmul2fv.y | |- ( ph -> Y e. NN0 ) |
|
| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | coe1tmmul2 | |- ( ph -> ( coe1 ` ( A .xb ( C .x. ( D .^ X ) ) ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( ( coe1 ` A ) ` ( x - D ) ) .X. C ) , .0. ) ) ) |
| 17 | 16 | fveq1d | |- ( ph -> ( ( coe1 ` ( A .xb ( C .x. ( D .^ X ) ) ) ) ` ( D + Y ) ) = ( ( x e. NN0 |-> if ( D <_ x , ( ( ( coe1 ` A ) ` ( x - D ) ) .X. C ) , .0. ) ) ` ( D + Y ) ) ) |
| 18 | 14 15 | nn0addcld | |- ( ph -> ( D + Y ) e. NN0 ) |
| 19 | breq2 | |- ( x = ( D + Y ) -> ( D <_ x <-> D <_ ( D + Y ) ) ) |
|
| 20 | fvoveq1 | |- ( x = ( D + Y ) -> ( ( coe1 ` A ) ` ( x - D ) ) = ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) ) |
|
| 21 | 20 | oveq1d | |- ( x = ( D + Y ) -> ( ( ( coe1 ` A ) ` ( x - D ) ) .X. C ) = ( ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) .X. C ) ) |
| 22 | 19 21 | ifbieq1d | |- ( x = ( D + Y ) -> if ( D <_ x , ( ( ( coe1 ` A ) ` ( x - D ) ) .X. C ) , .0. ) = if ( D <_ ( D + Y ) , ( ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) .X. C ) , .0. ) ) |
| 23 | eqid | |- ( x e. NN0 |-> if ( D <_ x , ( ( ( coe1 ` A ) ` ( x - D ) ) .X. C ) , .0. ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( ( coe1 ` A ) ` ( x - D ) ) .X. C ) , .0. ) ) |
|
| 24 | ovex | |- ( ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) .X. C ) e. _V |
|
| 25 | 1 | fvexi | |- .0. e. _V |
| 26 | 24 25 | ifex | |- if ( D <_ ( D + Y ) , ( ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) .X. C ) , .0. ) e. _V |
| 27 | 22 23 26 | fvmpt | |- ( ( D + Y ) e. NN0 -> ( ( x e. NN0 |-> if ( D <_ x , ( ( ( coe1 ` A ) ` ( x - D ) ) .X. C ) , .0. ) ) ` ( D + Y ) ) = if ( D <_ ( D + Y ) , ( ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) .X. C ) , .0. ) ) |
| 28 | 18 27 | syl | |- ( ph -> ( ( x e. NN0 |-> if ( D <_ x , ( ( ( coe1 ` A ) ` ( x - D ) ) .X. C ) , .0. ) ) ` ( D + Y ) ) = if ( D <_ ( D + Y ) , ( ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) .X. C ) , .0. ) ) |
| 29 | 14 | nn0red | |- ( ph -> D e. RR ) |
| 30 | nn0addge1 | |- ( ( D e. RR /\ Y e. NN0 ) -> D <_ ( D + Y ) ) |
|
| 31 | 29 15 30 | syl2anc | |- ( ph -> D <_ ( D + Y ) ) |
| 32 | 31 | iftrued | |- ( ph -> if ( D <_ ( D + Y ) , ( ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) .X. C ) , .0. ) = ( ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) .X. C ) ) |
| 33 | 14 | nn0cnd | |- ( ph -> D e. CC ) |
| 34 | 15 | nn0cnd | |- ( ph -> Y e. CC ) |
| 35 | 33 34 | pncan2d | |- ( ph -> ( ( D + Y ) - D ) = Y ) |
| 36 | 35 | fveq2d | |- ( ph -> ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) = ( ( coe1 ` A ) ` Y ) ) |
| 37 | 36 | oveq1d | |- ( ph -> ( ( ( coe1 ` A ) ` ( ( D + Y ) - D ) ) .X. C ) = ( ( ( coe1 ` A ) ` Y ) .X. C ) ) |
| 38 | 28 32 37 | 3eqtrd | |- ( ph -> ( ( x e. NN0 |-> if ( D <_ x , ( ( ( coe1 ` A ) ` ( x - D ) ) .X. C ) , .0. ) ) ` ( D + Y ) ) = ( ( ( coe1 ` A ) ` Y ) .X. C ) ) |
| 39 | 17 38 | eqtrd | |- ( ph -> ( ( coe1 ` ( A .xb ( C .x. ( D .^ X ) ) ) ) ` ( D + Y ) ) = ( ( ( coe1 ` A ) ` Y ) .X. C ) ) |