This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1tm.z | |- .0. = ( 0g ` R ) |
|
| coe1tm.k | |- K = ( Base ` R ) |
||
| coe1tm.p | |- P = ( Poly1 ` R ) |
||
| coe1tm.x | |- X = ( var1 ` R ) |
||
| coe1tm.m | |- .x. = ( .s ` P ) |
||
| coe1tm.n | |- N = ( mulGrp ` P ) |
||
| coe1tm.e | |- .^ = ( .g ` N ) |
||
| Assertion | coe1tmfv1 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | |- .0. = ( 0g ` R ) |
|
| 2 | coe1tm.k | |- K = ( Base ` R ) |
|
| 3 | coe1tm.p | |- P = ( Poly1 ` R ) |
|
| 4 | coe1tm.x | |- X = ( var1 ` R ) |
|
| 5 | coe1tm.m | |- .x. = ( .s ` P ) |
|
| 6 | coe1tm.n | |- N = ( mulGrp ` P ) |
|
| 7 | coe1tm.e | |- .^ = ( .g ` N ) |
|
| 8 | 1 2 3 4 5 6 7 | coe1tm | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) ) |
| 9 | 8 | fveq1d | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) = ( ( x e. NN0 |-> if ( x = D , C , .0. ) ) ` D ) ) |
| 10 | eqid | |- ( x e. NN0 |-> if ( x = D , C , .0. ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) |
|
| 11 | iftrue | |- ( x = D -> if ( x = D , C , .0. ) = C ) |
|
| 12 | simp3 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> D e. NN0 ) |
|
| 13 | simp2 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> C e. K ) |
|
| 14 | 10 11 12 13 | fvmptd3 | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( x e. NN0 |-> if ( x = D , C , .0. ) ) ` D ) = C ) |
| 15 | 9 14 | eqtrd | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` D ) = C ) |