This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1tm.z | |- .0. = ( 0g ` R ) |
|
| coe1tm.k | |- K = ( Base ` R ) |
||
| coe1tm.p | |- P = ( Poly1 ` R ) |
||
| coe1tm.x | |- X = ( var1 ` R ) |
||
| coe1tm.m | |- .x. = ( .s ` P ) |
||
| coe1tm.n | |- N = ( mulGrp ` P ) |
||
| coe1tm.e | |- .^ = ( .g ` N ) |
||
| coe1tmfv2.r | |- ( ph -> R e. Ring ) |
||
| coe1tmfv2.c | |- ( ph -> C e. K ) |
||
| coe1tmfv2.d | |- ( ph -> D e. NN0 ) |
||
| coe1tmfv2.f | |- ( ph -> F e. NN0 ) |
||
| coe1tmfv2.q | |- ( ph -> D =/= F ) |
||
| Assertion | coe1tmfv2 | |- ( ph -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` F ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | |- .0. = ( 0g ` R ) |
|
| 2 | coe1tm.k | |- K = ( Base ` R ) |
|
| 3 | coe1tm.p | |- P = ( Poly1 ` R ) |
|
| 4 | coe1tm.x | |- X = ( var1 ` R ) |
|
| 5 | coe1tm.m | |- .x. = ( .s ` P ) |
|
| 6 | coe1tm.n | |- N = ( mulGrp ` P ) |
|
| 7 | coe1tm.e | |- .^ = ( .g ` N ) |
|
| 8 | coe1tmfv2.r | |- ( ph -> R e. Ring ) |
|
| 9 | coe1tmfv2.c | |- ( ph -> C e. K ) |
|
| 10 | coe1tmfv2.d | |- ( ph -> D e. NN0 ) |
|
| 11 | coe1tmfv2.f | |- ( ph -> F e. NN0 ) |
|
| 12 | coe1tmfv2.q | |- ( ph -> D =/= F ) |
|
| 13 | 1 2 3 4 5 6 7 | coe1tm | |- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) ) |
| 14 | 8 9 10 13 | syl3anc | |- ( ph -> ( coe1 ` ( C .x. ( D .^ X ) ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) ) |
| 15 | 14 | fveq1d | |- ( ph -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` F ) = ( ( x e. NN0 |-> if ( x = D , C , .0. ) ) ` F ) ) |
| 16 | eqid | |- ( x e. NN0 |-> if ( x = D , C , .0. ) ) = ( x e. NN0 |-> if ( x = D , C , .0. ) ) |
|
| 17 | eqeq1 | |- ( x = F -> ( x = D <-> F = D ) ) |
|
| 18 | 17 | ifbid | |- ( x = F -> if ( x = D , C , .0. ) = if ( F = D , C , .0. ) ) |
| 19 | 2 1 | ring0cl | |- ( R e. Ring -> .0. e. K ) |
| 20 | 8 19 | syl | |- ( ph -> .0. e. K ) |
| 21 | 9 20 | ifcld | |- ( ph -> if ( F = D , C , .0. ) e. K ) |
| 22 | 16 18 11 21 | fvmptd3 | |- ( ph -> ( ( x e. NN0 |-> if ( x = D , C , .0. ) ) ` F ) = if ( F = D , C , .0. ) ) |
| 23 | 12 | necomd | |- ( ph -> F =/= D ) |
| 24 | 23 | neneqd | |- ( ph -> -. F = D ) |
| 25 | 24 | iffalsed | |- ( ph -> if ( F = D , C , .0. ) = .0. ) |
| 26 | 15 22 25 | 3eqtrd | |- ( ph -> ( ( coe1 ` ( C .x. ( D .^ X ) ) ) ` F ) = .0. ) |