This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the zero function. (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| cantnf0.a | |- ( ph -> (/) e. A ) |
||
| Assertion | cantnf0 | |- ( ph -> ( ( A CNF B ) ` ( B X. { (/) } ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | cantnf0.a | |- ( ph -> (/) e. A ) |
|
| 5 | eqid | |- OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) = OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) |
|
| 6 | fconst6g | |- ( (/) e. A -> ( B X. { (/) } ) : B --> A ) |
|
| 7 | 4 6 | syl | |- ( ph -> ( B X. { (/) } ) : B --> A ) |
| 8 | 3 4 | fczfsuppd | |- ( ph -> ( B X. { (/) } ) finSupp (/) ) |
| 9 | 1 2 3 | cantnfs | |- ( ph -> ( ( B X. { (/) } ) e. S <-> ( ( B X. { (/) } ) : B --> A /\ ( B X. { (/) } ) finSupp (/) ) ) ) |
| 10 | 7 8 9 | mpbir2and | |- ( ph -> ( B X. { (/) } ) e. S ) |
| 11 | eqid | |- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
|
| 12 | 1 2 3 5 10 11 | cantnfval | |- ( ph -> ( ( A CNF B ) ` ( B X. { (/) } ) ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ) ) |
| 13 | eqidd | |- ( ph -> ( B X. { (/) } ) = ( B X. { (/) } ) ) |
|
| 14 | 0ex | |- (/) e. _V |
|
| 15 | fnconstg | |- ( (/) e. _V -> ( B X. { (/) } ) Fn B ) |
|
| 16 | 14 15 | mp1i | |- ( ph -> ( B X. { (/) } ) Fn B ) |
| 17 | 14 | a1i | |- ( ph -> (/) e. _V ) |
| 18 | fnsuppeq0 | |- ( ( ( B X. { (/) } ) Fn B /\ B e. On /\ (/) e. _V ) -> ( ( ( B X. { (/) } ) supp (/) ) = (/) <-> ( B X. { (/) } ) = ( B X. { (/) } ) ) ) |
|
| 19 | 16 3 17 18 | syl3anc | |- ( ph -> ( ( ( B X. { (/) } ) supp (/) ) = (/) <-> ( B X. { (/) } ) = ( B X. { (/) } ) ) ) |
| 20 | 13 19 | mpbird | |- ( ph -> ( ( B X. { (/) } ) supp (/) ) = (/) ) |
| 21 | oieq2 | |- ( ( ( B X. { (/) } ) supp (/) ) = (/) -> OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) = OrdIso ( _E , (/) ) ) |
|
| 22 | 20 21 | syl | |- ( ph -> OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) = OrdIso ( _E , (/) ) ) |
| 23 | 22 | dmeqd | |- ( ph -> dom OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) = dom OrdIso ( _E , (/) ) ) |
| 24 | we0 | |- _E We (/) |
|
| 25 | eqid | |- OrdIso ( _E , (/) ) = OrdIso ( _E , (/) ) |
|
| 26 | 25 | oien | |- ( ( (/) e. _V /\ _E We (/) ) -> dom OrdIso ( _E , (/) ) ~~ (/) ) |
| 27 | 14 24 26 | mp2an | |- dom OrdIso ( _E , (/) ) ~~ (/) |
| 28 | en0 | |- ( dom OrdIso ( _E , (/) ) ~~ (/) <-> dom OrdIso ( _E , (/) ) = (/) ) |
|
| 29 | 27 28 | mpbi | |- dom OrdIso ( _E , (/) ) = (/) |
| 30 | 23 29 | eqtrdi | |- ( ph -> dom OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) = (/) ) |
| 31 | 30 | fveq2d | |- ( ph -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) ) |
| 32 | 11 | seqom0g | |- ( (/) e. _V -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) ) |
| 33 | 14 32 | mp1i | |- ( ph -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) ) |
| 34 | 12 31 33 | 3eqtrd | |- ( ph -> ( ( A CNF B ) ` ( B X. { (/) } ) ) = (/) ) |