This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnlim | |- ( A e. _om -> -. Lim A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord | |- ( A e. _om -> Ord A ) |
|
| 2 | ordirr | |- ( Ord A -> -. A e. A ) |
|
| 3 | 1 2 | syl | |- ( A e. _om -> -. A e. A ) |
| 4 | elom | |- ( A e. _om <-> ( A e. On /\ A. x ( Lim x -> A e. x ) ) ) |
|
| 5 | 4 | simprbi | |- ( A e. _om -> A. x ( Lim x -> A e. x ) ) |
| 6 | limeq | |- ( x = A -> ( Lim x <-> Lim A ) ) |
|
| 7 | eleq2 | |- ( x = A -> ( A e. x <-> A e. A ) ) |
|
| 8 | 6 7 | imbi12d | |- ( x = A -> ( ( Lim x -> A e. x ) <-> ( Lim A -> A e. A ) ) ) |
| 9 | 8 | spcgv | |- ( A e. _om -> ( A. x ( Lim x -> A e. x ) -> ( Lim A -> A e. A ) ) ) |
| 10 | 5 9 | mpd | |- ( A e. _om -> ( Lim A -> A e. A ) ) |
| 11 | 3 10 | mtod | |- ( A e. _om -> -. Lim A ) |