This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 9-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wwlkbp.v | |- V = ( Vtx ` G ) |
|
| wwlknp.e | |- E = ( Edg ` G ) |
||
| Assertion | wwlknp | |- ( W e. ( N WWalksN G ) -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlkbp.v | |- V = ( Vtx ` G ) |
|
| 2 | wwlknp.e | |- E = ( Edg ` G ) |
|
| 3 | 1 | wwlknbp | |- ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) ) |
| 4 | iswwlksn | |- ( N e. NN0 -> ( W e. ( N WWalksN G ) <-> ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) |
|
| 5 | 1 2 | iswwlks | |- ( W e. ( WWalks ` G ) <-> ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| 6 | simpl2 | |- ( ( ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) /\ ( ( # ` W ) = ( N + 1 ) /\ N e. NN0 ) ) -> W e. Word V ) |
|
| 7 | simprl | |- ( ( ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) /\ ( ( # ` W ) = ( N + 1 ) /\ N e. NN0 ) ) -> ( # ` W ) = ( N + 1 ) ) |
|
| 8 | oveq1 | |- ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
|
| 9 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 10 | pncan1 | |- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
|
| 11 | 9 10 | syl | |- ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) |
| 12 | 8 11 | sylan9eq | |- ( ( ( # ` W ) = ( N + 1 ) /\ N e. NN0 ) -> ( ( # ` W ) - 1 ) = N ) |
| 13 | 12 | oveq2d | |- ( ( ( # ` W ) = ( N + 1 ) /\ N e. NN0 ) -> ( 0 ..^ ( ( # ` W ) - 1 ) ) = ( 0 ..^ N ) ) |
| 14 | 13 | raleqdv | |- ( ( ( # ` W ) = ( N + 1 ) /\ N e. NN0 ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E <-> A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| 15 | 14 | biimpcd | |- ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E -> ( ( ( # ` W ) = ( N + 1 ) /\ N e. NN0 ) -> A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| 16 | 15 | 3ad2ant3 | |- ( ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( ( ( # ` W ) = ( N + 1 ) /\ N e. NN0 ) -> A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| 17 | 16 | imp | |- ( ( ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) /\ ( ( # ` W ) = ( N + 1 ) /\ N e. NN0 ) ) -> A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) |
| 18 | 6 7 17 | 3jca | |- ( ( ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) /\ ( ( # ` W ) = ( N + 1 ) /\ N e. NN0 ) ) -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| 19 | 18 | ex | |- ( ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( ( ( # ` W ) = ( N + 1 ) /\ N e. NN0 ) -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
| 20 | 5 19 | sylbi | |- ( W e. ( WWalks ` G ) -> ( ( ( # ` W ) = ( N + 1 ) /\ N e. NN0 ) -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
| 21 | 20 | expdimp | |- ( ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( N e. NN0 -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
| 22 | 21 | com12 | |- ( N e. NN0 -> ( ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
| 23 | 4 22 | sylbid | |- ( N e. NN0 -> ( W e. ( N WWalksN G ) -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
| 24 | 23 | 3ad2ant2 | |- ( ( G e. _V /\ N e. NN0 /\ W e. Word V ) -> ( W e. ( N WWalksN G ) -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
| 25 | 3 24 | mpcom | |- ( W e. ( N WWalksN G ) -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |