This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A symbol in a prefix of a word, indexed using the prefix' indices. (Contributed by Alexander van der Vekens, 16-Jun-2018) (Revised by AV, 3-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxfv | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ L ) ) -> ( ( W prefix L ) ` I ) = ( W ` I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 | |- ( L e. ( 0 ... ( # ` W ) ) -> L e. NN0 ) |
|
| 2 | pfxval | |- ( ( W e. Word V /\ L e. NN0 ) -> ( W prefix L ) = ( W substr <. 0 , L >. ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( W prefix L ) = ( W substr <. 0 , L >. ) ) |
| 4 | 3 | 3adant3 | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ L ) ) -> ( W prefix L ) = ( W substr <. 0 , L >. ) ) |
| 5 | 4 | fveq1d | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ L ) ) -> ( ( W prefix L ) ` I ) = ( ( W substr <. 0 , L >. ) ` I ) ) |
| 6 | simp1 | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ L ) ) -> W e. Word V ) |
|
| 7 | 0elfz | |- ( L e. NN0 -> 0 e. ( 0 ... L ) ) |
|
| 8 | 1 7 | syl | |- ( L e. ( 0 ... ( # ` W ) ) -> 0 e. ( 0 ... L ) ) |
| 9 | 8 | 3ad2ant2 | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ L ) ) -> 0 e. ( 0 ... L ) ) |
| 10 | simp2 | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ L ) ) -> L e. ( 0 ... ( # ` W ) ) ) |
|
| 11 | 1 | nn0cnd | |- ( L e. ( 0 ... ( # ` W ) ) -> L e. CC ) |
| 12 | 11 | subid1d | |- ( L e. ( 0 ... ( # ` W ) ) -> ( L - 0 ) = L ) |
| 13 | 12 | eqcomd | |- ( L e. ( 0 ... ( # ` W ) ) -> L = ( L - 0 ) ) |
| 14 | 13 | oveq2d | |- ( L e. ( 0 ... ( # ` W ) ) -> ( 0 ..^ L ) = ( 0 ..^ ( L - 0 ) ) ) |
| 15 | 14 | eleq2d | |- ( L e. ( 0 ... ( # ` W ) ) -> ( I e. ( 0 ..^ L ) <-> I e. ( 0 ..^ ( L - 0 ) ) ) ) |
| 16 | 15 | biimpd | |- ( L e. ( 0 ... ( # ` W ) ) -> ( I e. ( 0 ..^ L ) -> I e. ( 0 ..^ ( L - 0 ) ) ) ) |
| 17 | 16 | a1i | |- ( W e. Word V -> ( L e. ( 0 ... ( # ` W ) ) -> ( I e. ( 0 ..^ L ) -> I e. ( 0 ..^ ( L - 0 ) ) ) ) ) |
| 18 | 17 | 3imp | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ L ) ) -> I e. ( 0 ..^ ( L - 0 ) ) ) |
| 19 | swrdfv | |- ( ( ( W e. Word V /\ 0 e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` W ) ) ) /\ I e. ( 0 ..^ ( L - 0 ) ) ) -> ( ( W substr <. 0 , L >. ) ` I ) = ( W ` ( I + 0 ) ) ) |
|
| 20 | 6 9 10 18 19 | syl31anc | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ L ) ) -> ( ( W substr <. 0 , L >. ) ` I ) = ( W ` ( I + 0 ) ) ) |
| 21 | elfzoelz | |- ( I e. ( 0 ..^ L ) -> I e. ZZ ) |
|
| 22 | 21 | zcnd | |- ( I e. ( 0 ..^ L ) -> I e. CC ) |
| 23 | 22 | addridd | |- ( I e. ( 0 ..^ L ) -> ( I + 0 ) = I ) |
| 24 | 23 | 3ad2ant3 | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ L ) ) -> ( I + 0 ) = I ) |
| 25 | 24 | fveq2d | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ L ) ) -> ( W ` ( I + 0 ) ) = ( W ` I ) ) |
| 26 | 5 20 25 | 3eqtrd | |- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ L ) ) -> ( ( W prefix L ) ` I ) = ( W ` I ) ) |