This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | letrp1 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A <_ ( B + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1 | |- ( B e. RR -> B < ( B + 1 ) ) |
|
| 2 | 1 | adantl | |- ( ( A e. RR /\ B e. RR ) -> B < ( B + 1 ) ) |
| 3 | peano2re | |- ( B e. RR -> ( B + 1 ) e. RR ) |
|
| 4 | 3 | ancli | |- ( B e. RR -> ( B e. RR /\ ( B + 1 ) e. RR ) ) |
| 5 | lelttr | |- ( ( A e. RR /\ B e. RR /\ ( B + 1 ) e. RR ) -> ( ( A <_ B /\ B < ( B + 1 ) ) -> A < ( B + 1 ) ) ) |
|
| 6 | 5 | 3expb | |- ( ( A e. RR /\ ( B e. RR /\ ( B + 1 ) e. RR ) ) -> ( ( A <_ B /\ B < ( B + 1 ) ) -> A < ( B + 1 ) ) ) |
| 7 | 4 6 | sylan2 | |- ( ( A e. RR /\ B e. RR ) -> ( ( A <_ B /\ B < ( B + 1 ) ) -> A < ( B + 1 ) ) ) |
| 8 | 2 7 | mpan2d | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> A < ( B + 1 ) ) ) |
| 9 | 8 | 3impia | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A < ( B + 1 ) ) |
| 10 | ltle | |- ( ( A e. RR /\ ( B + 1 ) e. RR ) -> ( A < ( B + 1 ) -> A <_ ( B + 1 ) ) ) |
|
| 11 | 3 10 | sylan2 | |- ( ( A e. RR /\ B e. RR ) -> ( A < ( B + 1 ) -> A <_ ( B + 1 ) ) ) |
| 12 | 11 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A < ( B + 1 ) -> A <_ ( B + 1 ) ) ) |
| 13 | 9 12 | mpd | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A <_ ( B + 1 ) ) |