This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for clwlkclwwlklem2 . (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 11-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
| Assertion | clwlkclwwlklem2a | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
| 2 | simpl | |- ( ( x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> x < ( ( # ` P ) - 2 ) ) |
|
| 3 | f1f1orn | |- ( E : dom E -1-1-> R -> E : dom E -1-1-onto-> ran E ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> E : dom E -1-1-onto-> ran E ) |
| 5 | 4 | adantr | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> E : dom E -1-1-onto-> ran E ) |
| 6 | 5 | ad2antrl | |- ( ( x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> E : dom E -1-1-onto-> ran E ) |
| 7 | elfzo0 | |- ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> ( x e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ x < ( ( # ` P ) - 1 ) ) ) |
|
| 8 | lencl | |- ( P e. Word V -> ( # ` P ) e. NN0 ) |
|
| 9 | simpl | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> x e. NN0 ) |
|
| 10 | 9 | adantr | |- ( ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( x < ( ( # ` P ) - 2 ) /\ 2 <_ ( # ` P ) ) ) -> x e. NN0 ) |
| 11 | elnn0z | |- ( x e. NN0 <-> ( x e. ZZ /\ 0 <_ x ) ) |
|
| 12 | 0red | |- ( ( x e. ZZ /\ ( # ` P ) e. NN0 ) -> 0 e. RR ) |
|
| 13 | zre | |- ( x e. ZZ -> x e. RR ) |
|
| 14 | 13 | adantr | |- ( ( x e. ZZ /\ ( # ` P ) e. NN0 ) -> x e. RR ) |
| 15 | nn0re | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR ) |
|
| 16 | 2re | |- 2 e. RR |
|
| 17 | 16 | a1i | |- ( ( # ` P ) e. NN0 -> 2 e. RR ) |
| 18 | 15 17 | resubcld | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. RR ) |
| 19 | 18 | adantl | |- ( ( x e. ZZ /\ ( # ` P ) e. NN0 ) -> ( ( # ` P ) - 2 ) e. RR ) |
| 20 | lelttr | |- ( ( 0 e. RR /\ x e. RR /\ ( ( # ` P ) - 2 ) e. RR ) -> ( ( 0 <_ x /\ x < ( ( # ` P ) - 2 ) ) -> 0 < ( ( # ` P ) - 2 ) ) ) |
|
| 21 | 12 14 19 20 | syl3anc | |- ( ( x e. ZZ /\ ( # ` P ) e. NN0 ) -> ( ( 0 <_ x /\ x < ( ( # ` P ) - 2 ) ) -> 0 < ( ( # ` P ) - 2 ) ) ) |
| 22 | nn0z | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ ) |
|
| 23 | 2z | |- 2 e. ZZ |
|
| 24 | 23 | a1i | |- ( ( # ` P ) e. NN0 -> 2 e. ZZ ) |
| 25 | 22 24 | zsubcld | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 26 | 25 | anim1i | |- ( ( ( # ` P ) e. NN0 /\ 0 < ( ( # ` P ) - 2 ) ) -> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 < ( ( # ` P ) - 2 ) ) ) |
| 27 | elnnz | |- ( ( ( # ` P ) - 2 ) e. NN <-> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 < ( ( # ` P ) - 2 ) ) ) |
|
| 28 | 26 27 | sylibr | |- ( ( ( # ` P ) e. NN0 /\ 0 < ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) - 2 ) e. NN ) |
| 29 | nn0cn | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. CC ) |
|
| 30 | peano2cnm | |- ( ( # ` P ) e. CC -> ( ( # ` P ) - 1 ) e. CC ) |
|
| 31 | 29 30 | syl | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 1 ) e. CC ) |
| 32 | 31 | subid1d | |- ( ( # ` P ) e. NN0 -> ( ( ( # ` P ) - 1 ) - 0 ) = ( ( # ` P ) - 1 ) ) |
| 33 | 32 | oveq1d | |- ( ( # ` P ) e. NN0 -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( ( # ` P ) - 1 ) - 1 ) ) |
| 34 | 1cnd | |- ( ( # ` P ) e. NN0 -> 1 e. CC ) |
|
| 35 | 29 34 34 | subsub4d | |- ( ( # ` P ) e. NN0 -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( # ` P ) - ( 1 + 1 ) ) ) |
| 36 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 37 | 36 | a1i | |- ( ( # ` P ) e. NN0 -> ( 1 + 1 ) = 2 ) |
| 38 | 37 | oveq2d | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - ( 1 + 1 ) ) = ( ( # ` P ) - 2 ) ) |
| 39 | 35 38 | eqtrd | |- ( ( # ` P ) e. NN0 -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
| 40 | 33 39 | eqtrd | |- ( ( # ` P ) e. NN0 -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
| 41 | 40 | eleq1d | |- ( ( # ` P ) e. NN0 -> ( ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN <-> ( ( # ` P ) - 2 ) e. NN ) ) |
| 42 | 41 | adantr | |- ( ( ( # ` P ) e. NN0 /\ 0 < ( ( # ` P ) - 2 ) ) -> ( ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN <-> ( ( # ` P ) - 2 ) e. NN ) ) |
| 43 | 28 42 | mpbird | |- ( ( ( # ` P ) e. NN0 /\ 0 < ( ( # ` P ) - 2 ) ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) |
| 44 | 43 | ex | |- ( ( # ` P ) e. NN0 -> ( 0 < ( ( # ` P ) - 2 ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) ) |
| 45 | 44 | adantl | |- ( ( x e. ZZ /\ ( # ` P ) e. NN0 ) -> ( 0 < ( ( # ` P ) - 2 ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) ) |
| 46 | 21 45 | syld | |- ( ( x e. ZZ /\ ( # ` P ) e. NN0 ) -> ( ( 0 <_ x /\ x < ( ( # ` P ) - 2 ) ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) ) |
| 47 | 46 | exp4b | |- ( x e. ZZ -> ( ( # ` P ) e. NN0 -> ( 0 <_ x -> ( x < ( ( # ` P ) - 2 ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) ) ) ) |
| 48 | 47 | com23 | |- ( x e. ZZ -> ( 0 <_ x -> ( ( # ` P ) e. NN0 -> ( x < ( ( # ` P ) - 2 ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) ) ) ) |
| 49 | 48 | imp | |- ( ( x e. ZZ /\ 0 <_ x ) -> ( ( # ` P ) e. NN0 -> ( x < ( ( # ` P ) - 2 ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) ) ) |
| 50 | 11 49 | sylbi | |- ( x e. NN0 -> ( ( # ` P ) e. NN0 -> ( x < ( ( # ` P ) - 2 ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) ) ) |
| 51 | 50 | imp | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( x < ( ( # ` P ) - 2 ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) ) |
| 52 | 51 | com12 | |- ( x < ( ( # ` P ) - 2 ) -> ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) ) |
| 53 | 52 | adantr | |- ( ( x < ( ( # ` P ) - 2 ) /\ 2 <_ ( # ` P ) ) -> ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) ) |
| 54 | 53 | impcom | |- ( ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( x < ( ( # ` P ) - 2 ) /\ 2 <_ ( # ` P ) ) ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN ) |
| 55 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 56 | 55 | a1i | |- ( ( # ` P ) e. NN0 -> 2 = ( 1 + 1 ) ) |
| 57 | 56 | oveq2d | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) = ( ( # ` P ) - ( 1 + 1 ) ) ) |
| 58 | 32 | eqcomd | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 1 ) = ( ( ( # ` P ) - 1 ) - 0 ) ) |
| 59 | 58 | oveq1d | |- ( ( # ` P ) e. NN0 -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) |
| 60 | 57 35 59 | 3eqtr2d | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) = ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) |
| 61 | 60 | adantl | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( # ` P ) - 2 ) = ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) |
| 62 | 61 | breq2d | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( x < ( ( # ` P ) - 2 ) <-> x < ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) |
| 63 | 62 | biimpcd | |- ( x < ( ( # ` P ) - 2 ) -> ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> x < ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) |
| 64 | 63 | adantr | |- ( ( x < ( ( # ` P ) - 2 ) /\ 2 <_ ( # ` P ) ) -> ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> x < ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) |
| 65 | 64 | impcom | |- ( ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( x < ( ( # ` P ) - 2 ) /\ 2 <_ ( # ` P ) ) ) -> x < ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) |
| 66 | elfzo0 | |- ( x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) <-> ( x e. NN0 /\ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) e. NN /\ x < ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) |
|
| 67 | 10 54 65 66 | syl3anbrc | |- ( ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( x < ( ( # ` P ) - 2 ) /\ 2 <_ ( # ` P ) ) ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) |
| 68 | 67 | exp32 | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( x < ( ( # ` P ) - 2 ) -> ( 2 <_ ( # ` P ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) |
| 69 | 68 | a1d | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( x < ( ( # ` P ) - 1 ) -> ( x < ( ( # ` P ) - 2 ) -> ( 2 <_ ( # ` P ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) ) |
| 70 | 69 | com24 | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( 2 <_ ( # ` P ) -> ( x < ( ( # ` P ) - 2 ) -> ( x < ( ( # ` P ) - 1 ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) ) |
| 71 | 70 | ex | |- ( x e. NN0 -> ( ( # ` P ) e. NN0 -> ( 2 <_ ( # ` P ) -> ( x < ( ( # ` P ) - 2 ) -> ( x < ( ( # ` P ) - 1 ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) ) ) |
| 72 | 71 | com25 | |- ( x e. NN0 -> ( x < ( ( # ` P ) - 1 ) -> ( 2 <_ ( # ` P ) -> ( x < ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) ) ) |
| 73 | 72 | imp | |- ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) -> ( 2 <_ ( # ` P ) -> ( x < ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) ) |
| 74 | 73 | 3adant2 | |- ( ( x e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ x < ( ( # ` P ) - 1 ) ) -> ( 2 <_ ( # ` P ) -> ( x < ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) ) |
| 75 | 74 | com14 | |- ( ( # ` P ) e. NN0 -> ( 2 <_ ( # ` P ) -> ( x < ( ( # ` P ) - 2 ) -> ( ( x e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ x < ( ( # ` P ) - 1 ) ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) ) |
| 76 | 8 75 | syl | |- ( P e. Word V -> ( 2 <_ ( # ` P ) -> ( x < ( ( # ` P ) - 2 ) -> ( ( x e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ x < ( ( # ` P ) - 1 ) ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) ) |
| 77 | 76 | imp | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( x < ( ( # ` P ) - 2 ) -> ( ( x e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ x < ( ( # ` P ) - 1 ) ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) |
| 78 | 77 | 3adant1 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( x < ( ( # ` P ) - 2 ) -> ( ( x e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ x < ( ( # ` P ) - 1 ) ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) |
| 79 | 7 78 | syl7bi | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( x < ( ( # ` P ) - 2 ) -> ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) |
| 80 | 79 | com13 | |- ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( x < ( ( # ` P ) - 2 ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) ) ) |
| 81 | 80 | imp31 | |- ( ( ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ x < ( ( # ` P ) - 2 ) ) /\ ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) ) -> x e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) ) |
| 82 | fveq2 | |- ( i = x -> ( P ` i ) = ( P ` x ) ) |
|
| 83 | fvoveq1 | |- ( i = x -> ( P ` ( i + 1 ) ) = ( P ` ( x + 1 ) ) ) |
|
| 84 | 82 83 | preq12d | |- ( i = x -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` x ) , ( P ` ( x + 1 ) ) } ) |
| 85 | 84 | eleq1d | |- ( i = x -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) |
| 86 | 85 | adantl | |- ( ( ( ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ x < ( ( # ` P ) - 2 ) ) /\ ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) ) /\ i = x ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) |
| 87 | 81 86 | rspcdv | |- ( ( ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ x < ( ( # ` P ) - 2 ) ) /\ ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) ) -> ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) |
| 88 | 87 | ex | |- ( ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ x < ( ( # ` P ) - 2 ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) ) |
| 89 | 88 | com13 | |- ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ x < ( ( # ` P ) - 2 ) ) -> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) ) |
| 90 | 89 | ad2antrl | |- ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ x < ( ( # ` P ) - 2 ) ) -> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) ) |
| 91 | 90 | impcom | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> ( ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ x < ( ( # ` P ) - 2 ) ) -> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) |
| 92 | 91 | expdimp | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( x < ( ( # ` P ) - 2 ) -> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) |
| 93 | 92 | impcom | |- ( ( x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) |
| 94 | f1ocnvdm | |- ( ( E : dom E -1-1-onto-> ran E /\ { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) -> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. dom E ) |
|
| 95 | 6 93 94 | syl2anc | |- ( ( x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. dom E ) |
| 96 | 2 95 | jca | |- ( ( x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( x < ( ( # ` P ) - 2 ) /\ ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. dom E ) ) |
| 97 | 96 | orcd | |- ( ( x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( ( x < ( ( # ` P ) - 2 ) /\ ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. dom E ) \/ ( -. x < ( ( # ` P ) - 2 ) /\ ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) e. dom E ) ) ) |
| 98 | simpl | |- ( ( -. x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> -. x < ( ( # ` P ) - 2 ) ) |
|
| 99 | 5 | ad2antrl | |- ( ( -. x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> E : dom E -1-1-onto-> ran E ) |
| 100 | nn0z | |- ( x e. NN0 -> x e. ZZ ) |
|
| 101 | peano2zm | |- ( ( # ` P ) e. ZZ -> ( ( # ` P ) - 1 ) e. ZZ ) |
|
| 102 | 22 101 | syl | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 1 ) e. ZZ ) |
| 103 | 100 102 | anim12i | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( x e. ZZ /\ ( ( # ` P ) - 1 ) e. ZZ ) ) |
| 104 | zltlem1 | |- ( ( x e. ZZ /\ ( ( # ` P ) - 1 ) e. ZZ ) -> ( x < ( ( # ` P ) - 1 ) <-> x <_ ( ( ( # ` P ) - 1 ) - 1 ) ) ) |
|
| 105 | 103 104 | syl | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( x < ( ( # ` P ) - 1 ) <-> x <_ ( ( ( # ` P ) - 1 ) - 1 ) ) ) |
| 106 | 39 | adantl | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
| 107 | 106 | breq2d | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( x <_ ( ( ( # ` P ) - 1 ) - 1 ) <-> x <_ ( ( # ` P ) - 2 ) ) ) |
| 108 | 107 | biimpd | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( x <_ ( ( ( # ` P ) - 1 ) - 1 ) -> x <_ ( ( # ` P ) - 2 ) ) ) |
| 109 | 105 108 | sylbid | |- ( ( x e. NN0 /\ ( # ` P ) e. NN0 ) -> ( x < ( ( # ` P ) - 1 ) -> x <_ ( ( # ` P ) - 2 ) ) ) |
| 110 | 109 | impancom | |- ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) -> ( ( # ` P ) e. NN0 -> x <_ ( ( # ` P ) - 2 ) ) ) |
| 111 | 110 | imp | |- ( ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) /\ ( # ` P ) e. NN0 ) -> x <_ ( ( # ` P ) - 2 ) ) |
| 112 | nn0re | |- ( x e. NN0 -> x e. RR ) |
|
| 113 | 112 | adantr | |- ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) -> x e. RR ) |
| 114 | 113 18 | anim12i | |- ( ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) /\ ( # ` P ) e. NN0 ) -> ( x e. RR /\ ( ( # ` P ) - 2 ) e. RR ) ) |
| 115 | lenlt | |- ( ( x e. RR /\ ( ( # ` P ) - 2 ) e. RR ) -> ( x <_ ( ( # ` P ) - 2 ) <-> -. ( ( # ` P ) - 2 ) < x ) ) |
|
| 116 | 114 115 | syl | |- ( ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) /\ ( # ` P ) e. NN0 ) -> ( x <_ ( ( # ` P ) - 2 ) <-> -. ( ( # ` P ) - 2 ) < x ) ) |
| 117 | 111 116 | mpbid | |- ( ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) /\ ( # ` P ) e. NN0 ) -> -. ( ( # ` P ) - 2 ) < x ) |
| 118 | 117 | anim1i | |- ( ( ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) /\ ( # ` P ) e. NN0 ) /\ -. x < ( ( # ` P ) - 2 ) ) -> ( -. ( ( # ` P ) - 2 ) < x /\ -. x < ( ( # ` P ) - 2 ) ) ) |
| 119 | 114 | ancomd | |- ( ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) /\ ( # ` P ) e. NN0 ) -> ( ( ( # ` P ) - 2 ) e. RR /\ x e. RR ) ) |
| 120 | 119 | adantr | |- ( ( ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) /\ ( # ` P ) e. NN0 ) /\ -. x < ( ( # ` P ) - 2 ) ) -> ( ( ( # ` P ) - 2 ) e. RR /\ x e. RR ) ) |
| 121 | lttri3 | |- ( ( ( ( # ` P ) - 2 ) e. RR /\ x e. RR ) -> ( ( ( # ` P ) - 2 ) = x <-> ( -. ( ( # ` P ) - 2 ) < x /\ -. x < ( ( # ` P ) - 2 ) ) ) ) |
|
| 122 | 120 121 | syl | |- ( ( ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) /\ ( # ` P ) e. NN0 ) /\ -. x < ( ( # ` P ) - 2 ) ) -> ( ( ( # ` P ) - 2 ) = x <-> ( -. ( ( # ` P ) - 2 ) < x /\ -. x < ( ( # ` P ) - 2 ) ) ) ) |
| 123 | 118 122 | mpbird | |- ( ( ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) /\ ( # ` P ) e. NN0 ) /\ -. x < ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) - 2 ) = x ) |
| 124 | 123 | exp31 | |- ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) -> ( ( # ` P ) e. NN0 -> ( -. x < ( ( # ` P ) - 2 ) -> ( ( # ` P ) - 2 ) = x ) ) ) |
| 125 | 124 | com23 | |- ( ( x e. NN0 /\ x < ( ( # ` P ) - 1 ) ) -> ( -. x < ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) = x ) ) ) |
| 126 | 125 | 3adant2 | |- ( ( x e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ x < ( ( # ` P ) - 1 ) ) -> ( -. x < ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) = x ) ) ) |
| 127 | 7 126 | sylbi | |- ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( -. x < ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) = x ) ) ) |
| 128 | 127 | impcom | |- ( ( -. x < ( ( # ` P ) - 2 ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) = x ) ) |
| 129 | 8 128 | syl5com | |- ( P e. Word V -> ( ( -. x < ( ( # ` P ) - 2 ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( ( # ` P ) - 2 ) = x ) ) |
| 130 | 129 | 3ad2ant2 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( -. x < ( ( # ` P ) - 2 ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( ( # ` P ) - 2 ) = x ) ) |
| 131 | 130 | imp | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( -. x < ( ( # ` P ) - 2 ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( ( # ` P ) - 2 ) = x ) |
| 132 | 131 | fveq2d | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( -. x < ( ( # ` P ) - 2 ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( P ` ( ( # ` P ) - 2 ) ) = ( P ` x ) ) |
| 133 | 132 | preq1d | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( -. x < ( ( # ` P ) - 2 ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` x ) , ( P ` 0 ) } ) |
| 134 | 133 | eleq1d | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( -. x < ( ( # ` P ) - 2 ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` x ) , ( P ` 0 ) } e. ran E ) ) |
| 135 | 134 | biimpd | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( -. x < ( ( # ` P ) - 2 ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E -> { ( P ` x ) , ( P ` 0 ) } e. ran E ) ) |
| 136 | 135 | exp32 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( -. x < ( ( # ` P ) - 2 ) -> ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E -> { ( P ` x ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 137 | 136 | com12 | |- ( -. x < ( ( # ` P ) - 2 ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E -> { ( P ` x ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 138 | 137 | com14 | |- ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( -. x < ( ( # ` P ) - 2 ) -> { ( P ` x ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 139 | 138 | adantl | |- ( ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( -. x < ( ( # ` P ) - 2 ) -> { ( P ` x ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 140 | 139 | adantl | |- ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( -. x < ( ( # ` P ) - 2 ) -> { ( P ` x ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 141 | 140 | com12 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( -. x < ( ( # ` P ) - 2 ) -> { ( P ` x ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 142 | 141 | imp31 | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( -. x < ( ( # ` P ) - 2 ) -> { ( P ` x ) , ( P ` 0 ) } e. ran E ) ) |
| 143 | 142 | impcom | |- ( ( -. x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> { ( P ` x ) , ( P ` 0 ) } e. ran E ) |
| 144 | f1ocnvdm | |- ( ( E : dom E -1-1-onto-> ran E /\ { ( P ` x ) , ( P ` 0 ) } e. ran E ) -> ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) e. dom E ) |
|
| 145 | 99 143 144 | syl2anc | |- ( ( -. x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) e. dom E ) |
| 146 | 98 145 | jca | |- ( ( -. x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( -. x < ( ( # ` P ) - 2 ) /\ ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) e. dom E ) ) |
| 147 | 146 | olcd | |- ( ( -. x < ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( ( x < ( ( # ` P ) - 2 ) /\ ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. dom E ) \/ ( -. x < ( ( # ` P ) - 2 ) /\ ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) e. dom E ) ) ) |
| 148 | 97 147 | pm2.61ian | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( ( x < ( ( # ` P ) - 2 ) /\ ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. dom E ) \/ ( -. x < ( ( # ` P ) - 2 ) /\ ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) e. dom E ) ) ) |
| 149 | ifel | |- ( if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) e. dom E <-> ( ( x < ( ( # ` P ) - 2 ) /\ ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. dom E ) \/ ( -. x < ( ( # ` P ) - 2 ) /\ ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) e. dom E ) ) ) |
|
| 150 | 148 149 | sylibr | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) e. dom E ) |
| 151 | 150 1 | fmptd | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> F : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom E ) |
| 152 | iswrdi | |- ( F : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom E -> F e. Word dom E ) |
|
| 153 | 151 152 | syl | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> F e. Word dom E ) |
| 154 | wrdf | |- ( P e. Word V -> P : ( 0 ..^ ( # ` P ) ) --> V ) |
|
| 155 | 154 | adantr | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> P : ( 0 ..^ ( # ` P ) ) --> V ) |
| 156 | 1 | clwlkclwwlklem2a2 | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
| 157 | fzoval | |- ( ( # ` P ) e. ZZ -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) |
|
| 158 | 8 22 157 | 3syl | |- ( P e. Word V -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) |
| 159 | oveq2 | |- ( ( ( # ` P ) - 1 ) = ( # ` F ) -> ( 0 ... ( ( # ` P ) - 1 ) ) = ( 0 ... ( # ` F ) ) ) |
|
| 160 | 159 | eqcoms | |- ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( 0 ... ( ( # ` P ) - 1 ) ) = ( 0 ... ( # ` F ) ) ) |
| 161 | 158 160 | sylan9eq | |- ( ( P e. Word V /\ ( # ` F ) = ( ( # ` P ) - 1 ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( # ` F ) ) ) |
| 162 | 156 161 | syldan | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( # ` F ) ) ) |
| 163 | 162 | feq2d | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P : ( 0 ..^ ( # ` P ) ) --> V <-> P : ( 0 ... ( # ` F ) ) --> V ) ) |
| 164 | 155 163 | mpbid | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 165 | 164 | 3adant1 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 166 | 165 | adantr | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 167 | clwlkclwwlklem2a1 | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
|
| 168 | 167 | 3adant1 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 169 | 168 | imp | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) |
| 170 | 156 | 3adant1 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
| 171 | 170 | adantr | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
| 172 | 1 | clwlkclwwlklem2a4 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 173 | 172 | impl | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 174 | 173 | ralimdva | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 175 | oveq2 | |- ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
|
| 176 | 175 | raleqdv | |- ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 177 | 176 | imbi2d | |- ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) <-> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 178 | 174 177 | imbitrrid | |- ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 179 | 171 178 | mpcom | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 180 | 179 | adantrr | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 181 | 169 180 | mpd | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 182 | 153 166 181 | 3jca | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 183 | 1 | clwlkclwwlklem2a3 | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` ( # ` F ) ) = ( lastS ` P ) ) |
| 184 | 183 | 3adant1 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` ( # ` F ) ) = ( lastS ` P ) ) |
| 185 | 184 | eqcomd | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( lastS ` P ) = ( P ` ( # ` F ) ) ) |
| 186 | 185 | eqeq2d | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( P ` 0 ) = ( lastS ` P ) <-> ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 187 | 186 | biimpcd | |- ( ( P ` 0 ) = ( lastS ` P ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 188 | 187 | eqcoms | |- ( ( lastS ` P ) = ( P ` 0 ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 189 | 188 | adantr | |- ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 190 | 189 | impcom | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
| 191 | 182 190 | jca | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 192 | 191 | ex | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |