This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for clwlkclwwlk . (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 11-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwlkclwwlklem2 | |- ( ( ( E : dom E -1-1-> R /\ F e. Word dom E ) /\ ( P : ( 0 ... ( # ` F ) ) --> V /\ 2 <_ ( # ` P ) ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn | |- ( E : dom E -1-1-> R -> E Fn dom E ) |
|
| 2 | dffn3 | |- ( E Fn dom E <-> E : dom E --> ran E ) |
|
| 3 | 1 2 | sylib | |- ( E : dom E -1-1-> R -> E : dom E --> ran E ) |
| 4 | lencl | |- ( F e. Word dom E -> ( # ` F ) e. NN0 ) |
|
| 5 | ffn | |- ( P : ( 0 ... ( # ` F ) ) --> V -> P Fn ( 0 ... ( # ` F ) ) ) |
|
| 6 | fnfz0hash | |- ( ( ( # ` F ) e. NN0 /\ P Fn ( 0 ... ( # ` F ) ) ) -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
| 8 | ffz0iswrd | |- ( P : ( 0 ... ( # ` F ) ) --> V -> P e. Word V ) |
|
| 9 | lsw | |- ( P e. Word V -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
|
| 10 | 9 | ad6antr | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
| 11 | fvoveq1 | |- ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) ) |
|
| 12 | 11 | ad4antlr | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) ) |
| 13 | eqcom | |- ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` ( # ` F ) ) = ( P ` 0 ) ) |
|
| 14 | nn0cn | |- ( ( # ` F ) e. NN0 -> ( # ` F ) e. CC ) |
|
| 15 | 1cnd | |- ( ( # ` F ) e. NN0 -> 1 e. CC ) |
|
| 16 | 14 15 | pncand | |- ( ( # ` F ) e. NN0 -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) |
| 17 | 16 | eqcomd | |- ( ( # ` F ) e. NN0 -> ( # ` F ) = ( ( ( # ` F ) + 1 ) - 1 ) ) |
| 18 | 17 | ad4antlr | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( # ` F ) = ( ( ( # ` F ) + 1 ) - 1 ) ) |
| 19 | 18 | fveqeq2d | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) <-> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) ) |
| 20 | 19 | biimpd | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) ) |
| 21 | 13 20 | biimtrid | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) ) |
| 22 | 21 | adantld | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) ) |
| 23 | 22 | imp | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) |
| 24 | 10 12 23 | 3eqtrd | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( lastS ` P ) = ( P ` 0 ) ) |
| 25 | nn0z | |- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ ) |
|
| 26 | peano2zm | |- ( ( # ` F ) e. ZZ -> ( ( # ` F ) - 1 ) e. ZZ ) |
|
| 27 | 25 26 | syl | |- ( ( # ` F ) e. NN0 -> ( ( # ` F ) - 1 ) e. ZZ ) |
| 28 | nn0re | |- ( ( # ` F ) e. NN0 -> ( # ` F ) e. RR ) |
|
| 29 | 28 | lem1d | |- ( ( # ` F ) e. NN0 -> ( ( # ` F ) - 1 ) <_ ( # ` F ) ) |
| 30 | eluz2 | |- ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) <-> ( ( ( # ` F ) - 1 ) e. ZZ /\ ( # ` F ) e. ZZ /\ ( ( # ` F ) - 1 ) <_ ( # ` F ) ) ) |
|
| 31 | 27 25 29 30 | syl3anbrc | |- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) ) |
| 32 | 31 | ad4antlr | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) ) |
| 33 | fzoss2 | |- ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
|
| 34 | ssralv | |- ( ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
|
| 35 | 32 33 34 | 3syl | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 36 | simpr | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> E : dom E --> ran E ) |
|
| 37 | 36 | adantr | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> E : dom E --> ran E ) |
| 38 | wrdf | |- ( F e. Word dom E -> F : ( 0 ..^ ( # ` F ) ) --> dom E ) |
|
| 39 | simpll | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> F : ( 0 ..^ ( # ` F ) ) --> dom E ) |
|
| 40 | fzossrbm1 | |- ( ( # ` F ) e. ZZ -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
|
| 41 | 25 40 | syl | |- ( ( # ` F ) e. NN0 -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 42 | 41 | adantl | |- ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 43 | 42 | sselda | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) |
| 44 | 39 43 | ffvelcdmd | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( F ` i ) e. dom E ) |
| 45 | 44 | exp31 | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom E -> ( ( # ` F ) e. NN0 -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) ) |
| 46 | 38 45 | syl | |- ( F e. Word dom E -> ( ( # ` F ) e. NN0 -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) ) |
| 47 | 46 | adantl | |- ( ( P e. Word V /\ F e. Word dom E ) -> ( ( # ` F ) e. NN0 -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) ) |
| 48 | 47 | imp | |- ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) |
| 49 | 48 | ad3antrrr | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) |
| 50 | 49 | imp | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( F ` i ) e. dom E ) |
| 51 | 37 50 | ffvelcdmd | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( E ` ( F ` i ) ) e. ran E ) |
| 52 | eqcom | |- ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( E ` ( F ` i ) ) ) |
|
| 53 | 52 | biimpi | |- ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( E ` ( F ` i ) ) ) |
| 54 | 53 | eleq1d | |- ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> ( E ` ( F ` i ) ) e. ran E ) ) |
| 55 | 51 54 | syl5ibrcom | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 56 | 55 | ralimdva | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 57 | 35 56 | syldc | |- ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 58 | 57 | adantr | |- ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 59 | 58 | impcom | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) |
| 60 | breq2 | |- ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) <-> 2 <_ ( ( # ` F ) + 1 ) ) ) |
|
| 61 | 60 | adantl | |- ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( # ` P ) <-> 2 <_ ( ( # ` F ) + 1 ) ) ) |
| 62 | 2re | |- 2 e. RR |
|
| 63 | 62 | a1i | |- ( ( # ` F ) e. NN0 -> 2 e. RR ) |
| 64 | 1red | |- ( ( # ` F ) e. NN0 -> 1 e. RR ) |
|
| 65 | 63 64 28 | lesubaddd | |- ( ( # ` F ) e. NN0 -> ( ( 2 - 1 ) <_ ( # ` F ) <-> 2 <_ ( ( # ` F ) + 1 ) ) ) |
| 66 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 67 | 66 | breq1i | |- ( ( 2 - 1 ) <_ ( # ` F ) <-> 1 <_ ( # ` F ) ) |
| 68 | elnnnn0c | |- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) ) |
|
| 69 | 68 | simplbi2 | |- ( ( # ` F ) e. NN0 -> ( 1 <_ ( # ` F ) -> ( # ` F ) e. NN ) ) |
| 70 | 67 69 | biimtrid | |- ( ( # ` F ) e. NN0 -> ( ( 2 - 1 ) <_ ( # ` F ) -> ( # ` F ) e. NN ) ) |
| 71 | 65 70 | sylbird | |- ( ( # ` F ) e. NN0 -> ( 2 <_ ( ( # ` F ) + 1 ) -> ( # ` F ) e. NN ) ) |
| 72 | 71 | adantl | |- ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) -> ( 2 <_ ( ( # ` F ) + 1 ) -> ( # ` F ) e. NN ) ) |
| 73 | 72 | adantr | |- ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( ( # ` F ) + 1 ) -> ( # ` F ) e. NN ) ) |
| 74 | 61 73 | sylbid | |- ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( # ` P ) -> ( # ` F ) e. NN ) ) |
| 75 | 74 | imp | |- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( # ` F ) e. NN ) |
| 76 | 75 | adantr | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( # ` F ) e. NN ) |
| 77 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. NN ) |
|
| 78 | 76 77 | sylibr | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 79 | fzoend | |- ( 0 e. ( 0 ..^ ( # ` F ) ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
|
| 80 | 78 79 | syl | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 81 | 2fveq3 | |- ( i = ( ( # ` F ) - 1 ) -> ( E ` ( F ` i ) ) = ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) ) |
|
| 82 | fveq2 | |- ( i = ( ( # ` F ) - 1 ) -> ( P ` i ) = ( P ` ( ( # ` F ) - 1 ) ) ) |
|
| 83 | fvoveq1 | |- ( i = ( ( # ` F ) - 1 ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) ) |
|
| 84 | 82 83 | preq12d | |- ( i = ( ( # ` F ) - 1 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) |
| 85 | 81 84 | eqeq12d | |- ( i = ( ( # ` F ) - 1 ) -> ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) ) |
| 86 | 85 | adantl | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i = ( ( # ` F ) - 1 ) ) -> ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) ) |
| 87 | 80 86 | rspcdv | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) ) |
| 88 | 14 15 | npcand | |- ( ( # ` F ) e. NN0 -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) |
| 89 | 88 | ad4antlr | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) |
| 90 | 89 | fveq2d | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) = ( P ` ( # ` F ) ) ) |
| 91 | 90 | preq2d | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } ) |
| 92 | 91 | eqeq2d | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } ) ) |
| 93 | 38 | ad4antlr | |- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> F : ( 0 ..^ ( # ` F ) ) --> dom E ) |
| 94 | 71 | com12 | |- ( 2 <_ ( ( # ` F ) + 1 ) -> ( ( # ` F ) e. NN0 -> ( # ` F ) e. NN ) ) |
| 95 | 60 94 | biimtrdi | |- ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( ( # ` F ) e. NN0 -> ( # ` F ) e. NN ) ) ) |
| 96 | 95 | com3r | |- ( ( # ` F ) e. NN0 -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( # ` F ) e. NN ) ) ) |
| 97 | 96 | adantl | |- ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( # ` F ) e. NN ) ) ) |
| 98 | 97 | imp31 | |- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( # ` F ) e. NN ) |
| 99 | 98 77 | sylibr | |- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 100 | 99 79 | syl | |- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 101 | 93 100 | ffvelcdmd | |- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( F ` ( ( # ` F ) - 1 ) ) e. dom E ) |
| 102 | 101 | adantr | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( F ` ( ( # ` F ) - 1 ) ) e. dom E ) |
| 103 | 36 102 | ffvelcdmd | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) e. ran E ) |
| 104 | eqcom | |- ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } = ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) ) |
|
| 105 | 104 | biimpi | |- ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } = ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) ) |
| 106 | 105 | eleq1d | |- ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) e. ran E ) ) |
| 107 | 103 106 | syl5ibrcom | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
| 108 | 92 107 | sylbid | |- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
| 109 | 87 108 | syldc | |- ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
| 110 | 109 | adantr | |- ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
| 111 | 110 | impcom | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) |
| 112 | preq2 | |- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } ) |
|
| 113 | 112 | eleq1d | |- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
| 114 | 113 | adantl | |- ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
| 115 | 114 | adantl | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
| 116 | 111 115 | mpbird | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) |
| 117 | 24 59 116 | 3jca | |- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) |
| 118 | 117 | exp41 | |- ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) |
| 119 | 118 | exp41 | |- ( P e. Word V -> ( F e. Word dom E -> ( ( # ` F ) e. NN0 -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) ) |
| 120 | 8 119 | syl | |- ( P : ( 0 ... ( # ` F ) ) --> V -> ( F e. Word dom E -> ( ( # ` F ) e. NN0 -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) ) |
| 121 | 120 | com13 | |- ( ( # ` F ) e. NN0 -> ( F e. Word dom E -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) ) |
| 122 | 4 121 | mpcom | |- ( F e. Word dom E -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) |
| 123 | 122 | imp | |- ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) |
| 124 | 7 123 | mpd | |- ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) |
| 125 | 124 | expcom | |- ( P : ( 0 ... ( # ` F ) ) --> V -> ( F e. Word dom E -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) |
| 126 | 125 | com14 | |- ( E : dom E --> ran E -> ( F e. Word dom E -> ( 2 <_ ( # ` P ) -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) |
| 127 | 126 | imp | |- ( ( E : dom E --> ran E /\ F e. Word dom E ) -> ( 2 <_ ( # ` P ) -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) |
| 128 | 127 | impcomd | |- ( ( E : dom E --> ran E /\ F e. Word dom E ) -> ( ( P : ( 0 ... ( # ` F ) ) --> V /\ 2 <_ ( # ` P ) ) -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 129 | 3 128 | sylan | |- ( ( E : dom E -1-1-> R /\ F e. Word dom E ) -> ( ( P : ( 0 ... ( # ` F ) ) --> V /\ 2 <_ ( # ` P ) ) -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 130 | 129 | 3imp | |- ( ( ( E : dom E -1-1-> R /\ F e. Word dom E ) /\ ( P : ( 0 ... ( # ` F ) ) --> V /\ 2 <_ ( # ` P ) ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) |