This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 21-Jun-2018) (Revised by AV, 11-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwlkclwwlklem2a1 | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | |- ( P e. Word V -> ( # ` P ) e. NN0 ) |
|
| 2 | nn0cn | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. CC ) |
|
| 3 | peano2cnm | |- ( ( # ` P ) e. CC -> ( ( # ` P ) - 1 ) e. CC ) |
|
| 4 | 3 | subid1d | |- ( ( # ` P ) e. CC -> ( ( ( # ` P ) - 1 ) - 0 ) = ( ( # ` P ) - 1 ) ) |
| 5 | 4 | oveq1d | |- ( ( # ` P ) e. CC -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( ( # ` P ) - 1 ) - 1 ) ) |
| 6 | sub1m1 | |- ( ( # ` P ) e. CC -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
|
| 7 | 5 6 | eqtrd | |- ( ( # ` P ) e. CC -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
| 8 | 1 2 7 | 3syl | |- ( P e. Word V -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
| 9 | 8 | adantr | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
| 10 | 9 | oveq2d | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) = ( 0 ..^ ( ( # ` P ) - 2 ) ) ) |
| 11 | 10 | raleqdv | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 12 | 11 | biimpcd | |- ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 13 | 12 | adantr | |- ( ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 14 | 13 | adantl | |- ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 15 | 14 | impcom | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) |
| 16 | lsw | |- ( P e. Word V -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
|
| 17 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 18 | 17 | a1i | |- ( P e. Word V -> ( 2 - 1 ) = 1 ) |
| 19 | 18 | eqcomd | |- ( P e. Word V -> 1 = ( 2 - 1 ) ) |
| 20 | 19 | oveq2d | |- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( # ` P ) - ( 2 - 1 ) ) ) |
| 21 | 1 2 | syl | |- ( P e. Word V -> ( # ` P ) e. CC ) |
| 22 | 2cnd | |- ( P e. Word V -> 2 e. CC ) |
|
| 23 | 1cnd | |- ( P e. Word V -> 1 e. CC ) |
|
| 24 | 21 22 23 | subsubd | |- ( P e. Word V -> ( ( # ` P ) - ( 2 - 1 ) ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
| 25 | 20 24 | eqtrd | |- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
| 26 | 25 | fveq2d | |- ( P e. Word V -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 27 | 16 26 | eqtrd | |- ( P e. Word V -> ( lastS ` P ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 28 | 27 | adantr | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( lastS ` P ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 29 | 28 | adantr | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( lastS ` P ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 30 | eqeq1 | |- ( ( lastS ` P ) = ( P ` 0 ) -> ( ( lastS ` P ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) <-> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) ) |
|
| 31 | 30 | adantl | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( ( lastS ` P ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) <-> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) ) |
| 32 | 29 31 | mpbid | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 33 | 32 | preq2d | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
| 34 | 33 | eleq1d | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) |
| 35 | 34 | biimpd | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) |
| 36 | 35 | ex | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( lastS ` P ) = ( P ` 0 ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) ) |
| 37 | 36 | com13 | |- ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E -> ( ( lastS ` P ) = ( P ` 0 ) -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) ) |
| 38 | 37 | adantl | |- ( ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) -> ( ( lastS ` P ) = ( P ` 0 ) -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) ) |
| 39 | 38 | impcom | |- ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) |
| 40 | 39 | impcom | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) |
| 41 | ovexd | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> ( ( # ` P ) - 2 ) e. _V ) |
|
| 42 | fveq2 | |- ( i = ( ( # ` P ) - 2 ) -> ( P ` i ) = ( P ` ( ( # ` P ) - 2 ) ) ) |
|
| 43 | fvoveq1 | |- ( i = ( ( # ` P ) - 2 ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
|
| 44 | 42 43 | preq12d | |- ( i = ( ( # ` P ) - 2 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
| 45 | 44 | eleq1d | |- ( i = ( ( # ` P ) - 2 ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) |
| 46 | 45 | ralunsn | |- ( ( ( # ` P ) - 2 ) e. _V -> ( A. i e. ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> ( A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) ) |
| 47 | 41 46 | syl | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> ( A. i e. ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> ( A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) ) |
| 48 | 15 40 47 | mpbir2and | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> A. i e. ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) |
| 49 | 1e2m1 | |- 1 = ( 2 - 1 ) |
|
| 50 | 49 | a1i | |- ( P e. Word V -> 1 = ( 2 - 1 ) ) |
| 51 | 50 | oveq2d | |- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( # ` P ) - ( 2 - 1 ) ) ) |
| 52 | 51 24 | eqtrd | |- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
| 53 | 52 | oveq2d | |- ( P e. Word V -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( 0 ..^ ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 54 | 53 | adantr | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( 0 ..^ ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 55 | nn0re | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR ) |
|
| 56 | 2re | |- 2 e. RR |
|
| 57 | 56 | a1i | |- ( ( # ` P ) e. NN0 -> 2 e. RR ) |
| 58 | 55 57 | subge0d | |- ( ( # ` P ) e. NN0 -> ( 0 <_ ( ( # ` P ) - 2 ) <-> 2 <_ ( # ` P ) ) ) |
| 59 | 58 | biimprd | |- ( ( # ` P ) e. NN0 -> ( 2 <_ ( # ` P ) -> 0 <_ ( ( # ` P ) - 2 ) ) ) |
| 60 | nn0z | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ ) |
|
| 61 | 2z | |- 2 e. ZZ |
|
| 62 | 61 | a1i | |- ( ( # ` P ) e. NN0 -> 2 e. ZZ ) |
| 63 | 60 62 | zsubcld | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 64 | 59 63 | jctild | |- ( ( # ` P ) e. NN0 -> ( 2 <_ ( # ` P ) -> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 <_ ( ( # ` P ) - 2 ) ) ) ) |
| 65 | 1 64 | syl | |- ( P e. Word V -> ( 2 <_ ( # ` P ) -> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 <_ ( ( # ` P ) - 2 ) ) ) ) |
| 66 | 65 | imp | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 <_ ( ( # ` P ) - 2 ) ) ) |
| 67 | elnn0z | |- ( ( ( # ` P ) - 2 ) e. NN0 <-> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 <_ ( ( # ` P ) - 2 ) ) ) |
|
| 68 | 66 67 | sylibr | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. NN0 ) |
| 69 | elnn0uz | |- ( ( ( # ` P ) - 2 ) e. NN0 <-> ( ( # ` P ) - 2 ) e. ( ZZ>= ` 0 ) ) |
|
| 70 | 68 69 | sylib | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ( ZZ>= ` 0 ) ) |
| 71 | fzosplitsn | |- ( ( ( # ` P ) - 2 ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( ( # ` P ) - 2 ) + 1 ) ) = ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) ) |
|
| 72 | 70 71 | syl | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( 0 ..^ ( ( ( # ` P ) - 2 ) + 1 ) ) = ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) ) |
| 73 | 54 72 | eqtrd | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) ) |
| 74 | 73 | adantr | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) ) |
| 75 | 48 74 | raleqtrrdv | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) |
| 76 | 75 | ex | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |