This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 21-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
| Assertion | clwlkclwwlklem2a2 | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
| 2 | lencl | |- ( P e. Word V -> ( # ` P ) e. NN0 ) |
|
| 3 | nn0z | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ ) |
|
| 4 | 3 | adantr | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( # ` P ) e. ZZ ) |
| 5 | 0red | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 0 e. RR ) |
|
| 6 | 2re | |- 2 e. RR |
|
| 7 | 6 | a1i | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 2 e. RR ) |
| 8 | nn0re | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR ) |
|
| 9 | 8 | adantr | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( # ` P ) e. RR ) |
| 10 | 2pos | |- 0 < 2 |
|
| 11 | 10 | a1i | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 0 < 2 ) |
| 12 | simpr | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 2 <_ ( # ` P ) ) |
|
| 13 | 5 7 9 11 12 | ltletrd | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 0 < ( # ` P ) ) |
| 14 | elnnz | |- ( ( # ` P ) e. NN <-> ( ( # ` P ) e. ZZ /\ 0 < ( # ` P ) ) ) |
|
| 15 | 4 13 14 | sylanbrc | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) |
| 16 | 2 15 | sylan | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) |
| 17 | nnm1nn0 | |- ( ( # ` P ) e. NN -> ( ( # ` P ) - 1 ) e. NN0 ) |
|
| 18 | 16 17 | syl | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 1 ) e. NN0 ) |
| 19 | fvex | |- ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. _V |
|
| 20 | fvex | |- ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) e. _V |
|
| 21 | 19 20 | ifex | |- if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) e. _V |
| 22 | 21 1 | fnmpti | |- F Fn ( 0 ..^ ( ( # ` P ) - 1 ) ) |
| 23 | ffzo0hash | |- ( ( ( ( # ` P ) - 1 ) e. NN0 /\ F Fn ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
|
| 24 | 18 22 23 | sylancl | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |