This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If G is an inverse to F , then F is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invss.x | |- ( ph -> X e. B ) |
||
| invss.y | |- ( ph -> Y e. B ) |
||
| isoval.n | |- I = ( Iso ` C ) |
||
| inviso1.1 | |- ( ph -> F ( X N Y ) G ) |
||
| Assertion | inviso1 | |- ( ph -> F e. ( X I Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invss.x | |- ( ph -> X e. B ) |
|
| 5 | invss.y | |- ( ph -> Y e. B ) |
|
| 6 | isoval.n | |- I = ( Iso ` C ) |
|
| 7 | inviso1.1 | |- ( ph -> F ( X N Y ) G ) |
|
| 8 | 1 2 3 4 5 | invfun | |- ( ph -> Fun ( X N Y ) ) |
| 9 | funrel | |- ( Fun ( X N Y ) -> Rel ( X N Y ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> Rel ( X N Y ) ) |
| 11 | releldm | |- ( ( Rel ( X N Y ) /\ F ( X N Y ) G ) -> F e. dom ( X N Y ) ) |
|
| 12 | 10 7 11 | syl2anc | |- ( ph -> F e. dom ( X N Y ) ) |
| 13 | 1 2 3 4 5 6 | isoval | |- ( ph -> ( X I Y ) = dom ( X N Y ) ) |
| 14 | 12 13 | eleqtrrd | |- ( ph -> F e. ( X I Y ) ) |