This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfuval.i | |- I = ( idFunc ` C ) |
|
| idfuval.b | |- B = ( Base ` C ) |
||
| idfuval.c | |- ( ph -> C e. Cat ) |
||
| idfuval.h | |- H = ( Hom ` C ) |
||
| idfu2nd.x | |- ( ph -> X e. B ) |
||
| idfu2nd.y | |- ( ph -> Y e. B ) |
||
| Assertion | idfu2nd | |- ( ph -> ( X ( 2nd ` I ) Y ) = ( _I |` ( X H Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfuval.i | |- I = ( idFunc ` C ) |
|
| 2 | idfuval.b | |- B = ( Base ` C ) |
|
| 3 | idfuval.c | |- ( ph -> C e. Cat ) |
|
| 4 | idfuval.h | |- H = ( Hom ` C ) |
|
| 5 | idfu2nd.x | |- ( ph -> X e. B ) |
|
| 6 | idfu2nd.y | |- ( ph -> Y e. B ) |
|
| 7 | df-ov | |- ( X ( 2nd ` I ) Y ) = ( ( 2nd ` I ) ` <. X , Y >. ) |
|
| 8 | 1 2 3 4 | idfuval | |- ( ph -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| 9 | 8 | fveq2d | |- ( ph -> ( 2nd ` I ) = ( 2nd ` <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) ) |
| 10 | 2 | fvexi | |- B e. _V |
| 11 | resiexg | |- ( B e. _V -> ( _I |` B ) e. _V ) |
|
| 12 | 10 11 | ax-mp | |- ( _I |` B ) e. _V |
| 13 | 10 10 | xpex | |- ( B X. B ) e. _V |
| 14 | 13 | mptex | |- ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) e. _V |
| 15 | 12 14 | op2nd | |- ( 2nd ` <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) |
| 16 | 9 15 | eqtrdi | |- ( ph -> ( 2nd ` I ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) |
| 17 | simpr | |- ( ( ph /\ z = <. X , Y >. ) -> z = <. X , Y >. ) |
|
| 18 | 17 | fveq2d | |- ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( H ` <. X , Y >. ) ) |
| 19 | df-ov | |- ( X H Y ) = ( H ` <. X , Y >. ) |
|
| 20 | 18 19 | eqtr4di | |- ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( X H Y ) ) |
| 21 | 20 | reseq2d | |- ( ( ph /\ z = <. X , Y >. ) -> ( _I |` ( H ` z ) ) = ( _I |` ( X H Y ) ) ) |
| 22 | 5 6 | opelxpd | |- ( ph -> <. X , Y >. e. ( B X. B ) ) |
| 23 | ovex | |- ( X H Y ) e. _V |
|
| 24 | resiexg | |- ( ( X H Y ) e. _V -> ( _I |` ( X H Y ) ) e. _V ) |
|
| 25 | 23 24 | mp1i | |- ( ph -> ( _I |` ( X H Y ) ) e. _V ) |
| 26 | 16 21 22 25 | fvmptd | |- ( ph -> ( ( 2nd ` I ) ` <. X , Y >. ) = ( _I |` ( X H Y ) ) ) |
| 27 | 7 26 | eqtrid | |- ( ph -> ( X ( 2nd ` I ) Y ) = ( _I |` ( X H Y ) ) ) |