This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof shortened by AV, 21-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invss.x | |- ( ph -> X e. B ) |
||
| invss.y | |- ( ph -> Y e. B ) |
||
| isoval.n | |- I = ( Iso ` C ) |
||
| Assertion | isoval | |- ( ph -> ( X I Y ) = dom ( X N Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invss.x | |- ( ph -> X e. B ) |
|
| 5 | invss.y | |- ( ph -> Y e. B ) |
|
| 6 | isoval.n | |- I = ( Iso ` C ) |
|
| 7 | isofval | |- ( C e. Cat -> ( Iso ` C ) = ( ( z e. _V |-> dom z ) o. ( Inv ` C ) ) ) |
|
| 8 | 3 7 | syl | |- ( ph -> ( Iso ` C ) = ( ( z e. _V |-> dom z ) o. ( Inv ` C ) ) ) |
| 9 | 2 | coeq2i | |- ( ( z e. _V |-> dom z ) o. N ) = ( ( z e. _V |-> dom z ) o. ( Inv ` C ) ) |
| 10 | 8 6 9 | 3eqtr4g | |- ( ph -> I = ( ( z e. _V |-> dom z ) o. N ) ) |
| 11 | 10 | oveqd | |- ( ph -> ( X I Y ) = ( X ( ( z e. _V |-> dom z ) o. N ) Y ) ) |
| 12 | eqid | |- ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) = ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) |
|
| 13 | ovex | |- ( x ( Sect ` C ) y ) e. _V |
|
| 14 | 13 | inex1 | |- ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V |
| 15 | 12 14 | fnmpoi | |- ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( B X. B ) |
| 16 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 17 | 1 2 3 16 | invffval | |- ( ph -> N = ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) ) |
| 18 | 17 | fneq1d | |- ( ph -> ( N Fn ( B X. B ) <-> ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( B X. B ) ) ) |
| 19 | 15 18 | mpbiri | |- ( ph -> N Fn ( B X. B ) ) |
| 20 | 4 5 | opelxpd | |- ( ph -> <. X , Y >. e. ( B X. B ) ) |
| 21 | fvco2 | |- ( ( N Fn ( B X. B ) /\ <. X , Y >. e. ( B X. B ) ) -> ( ( ( z e. _V |-> dom z ) o. N ) ` <. X , Y >. ) = ( ( z e. _V |-> dom z ) ` ( N ` <. X , Y >. ) ) ) |
|
| 22 | 19 20 21 | syl2anc | |- ( ph -> ( ( ( z e. _V |-> dom z ) o. N ) ` <. X , Y >. ) = ( ( z e. _V |-> dom z ) ` ( N ` <. X , Y >. ) ) ) |
| 23 | df-ov | |- ( X ( ( z e. _V |-> dom z ) o. N ) Y ) = ( ( ( z e. _V |-> dom z ) o. N ) ` <. X , Y >. ) |
|
| 24 | ovex | |- ( X N Y ) e. _V |
|
| 25 | dmeq | |- ( z = ( X N Y ) -> dom z = dom ( X N Y ) ) |
|
| 26 | eqid | |- ( z e. _V |-> dom z ) = ( z e. _V |-> dom z ) |
|
| 27 | 24 | dmex | |- dom ( X N Y ) e. _V |
| 28 | 25 26 27 | fvmpt | |- ( ( X N Y ) e. _V -> ( ( z e. _V |-> dom z ) ` ( X N Y ) ) = dom ( X N Y ) ) |
| 29 | 24 28 | ax-mp | |- ( ( z e. _V |-> dom z ) ` ( X N Y ) ) = dom ( X N Y ) |
| 30 | df-ov | |- ( X N Y ) = ( N ` <. X , Y >. ) |
|
| 31 | 30 | fveq2i | |- ( ( z e. _V |-> dom z ) ` ( X N Y ) ) = ( ( z e. _V |-> dom z ) ` ( N ` <. X , Y >. ) ) |
| 32 | 29 31 | eqtr3i | |- dom ( X N Y ) = ( ( z e. _V |-> dom z ) ` ( N ` <. X , Y >. ) ) |
| 33 | 22 23 32 | 3eqtr4g | |- ( ph -> ( X ( ( z e. _V |-> dom z ) o. N ) Y ) = dom ( X N Y ) ) |
| 34 | 11 33 | eqtrd | |- ( ph -> ( X I Y ) = dom ( X N Y ) ) |