This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f00 | |- ( F : A --> (/) <-> ( F = (/) /\ A = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun | |- ( F : A --> (/) -> Fun F ) |
|
| 2 | frn | |- ( F : A --> (/) -> ran F C_ (/) ) |
|
| 3 | ss0 | |- ( ran F C_ (/) -> ran F = (/) ) |
|
| 4 | 2 3 | syl | |- ( F : A --> (/) -> ran F = (/) ) |
| 5 | dm0rn0 | |- ( dom F = (/) <-> ran F = (/) ) |
|
| 6 | 4 5 | sylibr | |- ( F : A --> (/) -> dom F = (/) ) |
| 7 | df-fn | |- ( F Fn (/) <-> ( Fun F /\ dom F = (/) ) ) |
|
| 8 | 1 6 7 | sylanbrc | |- ( F : A --> (/) -> F Fn (/) ) |
| 9 | fn0 | |- ( F Fn (/) <-> F = (/) ) |
|
| 10 | 8 9 | sylib | |- ( F : A --> (/) -> F = (/) ) |
| 11 | fdm | |- ( F : A --> (/) -> dom F = A ) |
|
| 12 | 11 6 | eqtr3d | |- ( F : A --> (/) -> A = (/) ) |
| 13 | 10 12 | jca | |- ( F : A --> (/) -> ( F = (/) /\ A = (/) ) ) |
| 14 | f0 | |- (/) : (/) --> (/) |
|
| 15 | feq1 | |- ( F = (/) -> ( F : A --> (/) <-> (/) : A --> (/) ) ) |
|
| 16 | feq2 | |- ( A = (/) -> ( (/) : A --> (/) <-> (/) : (/) --> (/) ) ) |
|
| 17 | 15 16 | sylan9bb | |- ( ( F = (/) /\ A = (/) ) -> ( F : A --> (/) <-> (/) : (/) --> (/) ) ) |
| 18 | 14 17 | mpbiri | |- ( ( F = (/) /\ A = (/) ) -> F : A --> (/) ) |
| 19 | 13 18 | impbii | |- ( F : A --> (/) <-> ( F = (/) /\ A = (/) ) ) |