This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of the Cantor normal form function (in later lemmas we will use dom ( A CNF B ) to abbreviate "the set of finitely supported functions from B to A "). (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnffval.s | |- S = { g e. ( A ^m B ) | g finSupp (/) } |
|
| cantnffval.a | |- ( ph -> A e. On ) |
||
| cantnffval.b | |- ( ph -> B e. On ) |
||
| Assertion | cantnfdm | |- ( ph -> dom ( A CNF B ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnffval.s | |- S = { g e. ( A ^m B ) | g finSupp (/) } |
|
| 2 | cantnffval.a | |- ( ph -> A e. On ) |
|
| 3 | cantnffval.b | |- ( ph -> B e. On ) |
|
| 4 | 1 2 3 | cantnffval | |- ( ph -> ( A CNF B ) = ( f e. S |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |
| 5 | 4 | dmeqd | |- ( ph -> dom ( A CNF B ) = dom ( f e. S |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |
| 6 | fvex | |- ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V |
|
| 7 | 6 | csbex | |- [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V |
| 8 | 7 | rgenw | |- A. f e. S [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V |
| 9 | dmmptg | |- ( A. f e. S [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V -> dom ( f e. S |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) = S ) |
|
| 10 | 8 9 | ax-mp | |- dom ( f e. S |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) = S |
| 11 | 5 10 | eqtrdi | |- ( ph -> dom ( A CNF B ) = S ) |