This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the natural logarithm is closed under addition with reals. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logrnaddcl | |- ( ( A e. ran log /\ B e. RR ) -> ( A + B ) e. ran log ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logrncn | |- ( A e. ran log -> A e. CC ) |
|
| 2 | recn | |- ( B e. RR -> B e. CC ) |
|
| 3 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. ran log /\ B e. RR ) -> ( A + B ) e. CC ) |
| 5 | ellogrn | |- ( A e. ran log <-> ( A e. CC /\ -u _pi < ( Im ` A ) /\ ( Im ` A ) <_ _pi ) ) |
|
| 6 | 5 | simp2bi | |- ( A e. ran log -> -u _pi < ( Im ` A ) ) |
| 7 | 6 | adantr | |- ( ( A e. ran log /\ B e. RR ) -> -u _pi < ( Im ` A ) ) |
| 8 | imadd | |- ( ( A e. CC /\ B e. CC ) -> ( Im ` ( A + B ) ) = ( ( Im ` A ) + ( Im ` B ) ) ) |
|
| 9 | 1 2 8 | syl2an | |- ( ( A e. ran log /\ B e. RR ) -> ( Im ` ( A + B ) ) = ( ( Im ` A ) + ( Im ` B ) ) ) |
| 10 | reim0 | |- ( B e. RR -> ( Im ` B ) = 0 ) |
|
| 11 | 10 | adantl | |- ( ( A e. ran log /\ B e. RR ) -> ( Im ` B ) = 0 ) |
| 12 | 11 | oveq2d | |- ( ( A e. ran log /\ B e. RR ) -> ( ( Im ` A ) + ( Im ` B ) ) = ( ( Im ` A ) + 0 ) ) |
| 13 | 1 | adantr | |- ( ( A e. ran log /\ B e. RR ) -> A e. CC ) |
| 14 | 13 | imcld | |- ( ( A e. ran log /\ B e. RR ) -> ( Im ` A ) e. RR ) |
| 15 | 14 | recnd | |- ( ( A e. ran log /\ B e. RR ) -> ( Im ` A ) e. CC ) |
| 16 | 15 | addridd | |- ( ( A e. ran log /\ B e. RR ) -> ( ( Im ` A ) + 0 ) = ( Im ` A ) ) |
| 17 | 9 12 16 | 3eqtrd | |- ( ( A e. ran log /\ B e. RR ) -> ( Im ` ( A + B ) ) = ( Im ` A ) ) |
| 18 | 7 17 | breqtrrd | |- ( ( A e. ran log /\ B e. RR ) -> -u _pi < ( Im ` ( A + B ) ) ) |
| 19 | 5 | simp3bi | |- ( A e. ran log -> ( Im ` A ) <_ _pi ) |
| 20 | 19 | adantr | |- ( ( A e. ran log /\ B e. RR ) -> ( Im ` A ) <_ _pi ) |
| 21 | 17 20 | eqbrtrd | |- ( ( A e. ran log /\ B e. RR ) -> ( Im ` ( A + B ) ) <_ _pi ) |
| 22 | ellogrn | |- ( ( A + B ) e. ran log <-> ( ( A + B ) e. CC /\ -u _pi < ( Im ` ( A + B ) ) /\ ( Im ` ( A + B ) ) <_ _pi ) ) |
|
| 23 | 4 18 21 22 | syl3anbrc | |- ( ( A e. ran log /\ B e. RR ) -> ( A + B ) e. ran log ) |