This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rule sqrt ( z w ) = ( sqrt z ) ( sqrt w ) is not always true on the complex numbers, but it is true when the arguments of z and w sum to within the interval ( -upi , pi ] , so there are some cases such as this one with z = 1 +i A and w = 1 - i A which are true unconditionally. This result can also be stated as " sqrt ( 1 + z ) + sqrt ( 1 - z ) is analytic". (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanlogadd | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | |- ( A e. dom arctan -> 0 e. RR ) |
|
| 2 | atandm2 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
|
| 3 | 2 | simp1bi | |- ( A e. dom arctan -> A e. CC ) |
| 4 | 3 | recld | |- ( A e. dom arctan -> ( Re ` A ) e. RR ) |
| 5 | atanlogaddlem | |- ( ( A e. dom arctan /\ 0 <_ ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
|
| 6 | ax-1cn | |- 1 e. CC |
|
| 7 | ax-icn | |- _i e. CC |
|
| 8 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 9 | 7 3 8 | sylancr | |- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 10 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 11 | 6 9 10 | sylancr | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 12 | 2 | simp3bi | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 13 | 11 12 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 14 | subcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
|
| 15 | 6 9 14 | sylancr | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 16 | 2 | simp2bi | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 17 | 15 16 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 18 | 13 17 | addcomd | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 19 | mulneg2 | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
|
| 20 | 7 3 19 | sylancr | |- ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 21 | 20 | oveq2d | |- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) |
| 22 | negsub | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
|
| 23 | 6 9 22 | sylancr | |- ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
| 24 | 21 23 | eqtrd | |- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) |
| 25 | 24 | fveq2d | |- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. -u A ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) |
| 26 | 20 | oveq2d | |- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 - -u ( _i x. A ) ) ) |
| 27 | subneg | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
|
| 28 | 6 9 27 | sylancr | |- ( A e. dom arctan -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
| 29 | 26 28 | eqtrd | |- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 + ( _i x. A ) ) ) |
| 30 | 29 | fveq2d | |- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. -u A ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 31 | 25 30 | oveq12d | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 32 | 18 31 | eqtr4d | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) |
| 33 | 32 | adantr | |- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) |
| 34 | atandmneg | |- ( A e. dom arctan -> -u A e. dom arctan ) |
|
| 35 | 4 | le0neg1d | |- ( A e. dom arctan -> ( ( Re ` A ) <_ 0 <-> 0 <_ -u ( Re ` A ) ) ) |
| 36 | 35 | biimpa | |- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> 0 <_ -u ( Re ` A ) ) |
| 37 | 3 | renegd | |- ( A e. dom arctan -> ( Re ` -u A ) = -u ( Re ` A ) ) |
| 38 | 37 | adantr | |- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( Re ` -u A ) = -u ( Re ` A ) ) |
| 39 | 36 38 | breqtrrd | |- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> 0 <_ ( Re ` -u A ) ) |
| 40 | atanlogaddlem | |- ( ( -u A e. dom arctan /\ 0 <_ ( Re ` -u A ) ) -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) e. ran log ) |
|
| 41 | 34 39 40 | syl2an2r | |- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) e. ran log ) |
| 42 | 33 41 | eqeltrd | |- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| 43 | 1 4 5 42 | lecasei | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |