This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Arithmetic series sum of the first N positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006) (Proof shortened by Mario Carneiro, 22-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | arisum | |- ( N e. NN0 -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | 1zzd | |- ( N e. NN -> 1 e. ZZ ) |
|
| 3 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 4 | elfzelz | |- ( k e. ( 1 ... N ) -> k e. ZZ ) |
|
| 5 | 4 | zcnd | |- ( k e. ( 1 ... N ) -> k e. CC ) |
| 6 | 5 | adantl | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> k e. CC ) |
| 7 | id | |- ( k = ( j + 1 ) -> k = ( j + 1 ) ) |
|
| 8 | 2 2 3 6 7 | fsumshftm | |- ( N e. NN -> sum_ k e. ( 1 ... N ) k = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( j + 1 ) ) |
| 9 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 10 | 9 | oveq1i | |- ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) |
| 11 | 10 | sumeq1i | |- sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( j + 1 ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) |
| 12 | 8 11 | eqtrdi | |- ( N e. NN -> sum_ k e. ( 1 ... N ) k = sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) ) |
| 13 | elfznn0 | |- ( j e. ( 0 ... ( N - 1 ) ) -> j e. NN0 ) |
|
| 14 | 13 | adantl | |- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. NN0 ) |
| 15 | bcnp1n | |- ( j e. NN0 -> ( ( j + 1 ) _C j ) = ( j + 1 ) ) |
|
| 16 | 14 15 | syl | |- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( j + 1 ) _C j ) = ( j + 1 ) ) |
| 17 | 14 | nn0cnd | |- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. CC ) |
| 18 | ax-1cn | |- 1 e. CC |
|
| 19 | addcom | |- ( ( j e. CC /\ 1 e. CC ) -> ( j + 1 ) = ( 1 + j ) ) |
|
| 20 | 17 18 19 | sylancl | |- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) = ( 1 + j ) ) |
| 21 | 20 | oveq1d | |- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( j + 1 ) _C j ) = ( ( 1 + j ) _C j ) ) |
| 22 | 16 21 | eqtr3d | |- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) = ( ( 1 + j ) _C j ) ) |
| 23 | 22 | sumeq2dv | |- ( N e. NN -> sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 + j ) _C j ) ) |
| 24 | 1nn0 | |- 1 e. NN0 |
|
| 25 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 26 | bcxmas | |- ( ( 1 e. NN0 /\ ( N - 1 ) e. NN0 ) -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 + j ) _C j ) ) |
|
| 27 | 24 25 26 | sylancr | |- ( N e. NN -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 + j ) _C j ) ) |
| 28 | 23 27 | eqtr4d | |- ( N e. NN -> sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) = ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) ) |
| 29 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
| 30 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 31 | 29 29 30 | ppncand | |- ( N e. NN -> ( ( 1 + 1 ) + ( N - 1 ) ) = ( 1 + N ) ) |
| 32 | 29 30 31 | comraddd | |- ( N e. NN -> ( ( 1 + 1 ) + ( N - 1 ) ) = ( N + 1 ) ) |
| 33 | 32 | oveq1d | |- ( N e. NN -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = ( ( N + 1 ) _C ( N - 1 ) ) ) |
| 34 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 35 | bcp1m1 | |- ( N e. NN0 -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |
|
| 36 | 34 35 | syl | |- ( N e. NN -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |
| 37 | sqval | |- ( N e. CC -> ( N ^ 2 ) = ( N x. N ) ) |
|
| 38 | 37 | eqcomd | |- ( N e. CC -> ( N x. N ) = ( N ^ 2 ) ) |
| 39 | mullid | |- ( N e. CC -> ( 1 x. N ) = N ) |
|
| 40 | 38 39 | oveq12d | |- ( N e. CC -> ( ( N x. N ) + ( 1 x. N ) ) = ( ( N ^ 2 ) + N ) ) |
| 41 | 30 40 | syl | |- ( N e. NN -> ( ( N x. N ) + ( 1 x. N ) ) = ( ( N ^ 2 ) + N ) ) |
| 42 | 30 30 29 41 | joinlmuladdmuld | |- ( N e. NN -> ( ( N + 1 ) x. N ) = ( ( N ^ 2 ) + N ) ) |
| 43 | 42 | oveq1d | |- ( N e. NN -> ( ( ( N + 1 ) x. N ) / 2 ) = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 44 | 33 36 43 | 3eqtrd | |- ( N e. NN -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 45 | 12 28 44 | 3eqtrd | |- ( N e. NN -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 46 | oveq2 | |- ( N = 0 -> ( 1 ... N ) = ( 1 ... 0 ) ) |
|
| 47 | fz10 | |- ( 1 ... 0 ) = (/) |
|
| 48 | 46 47 | eqtrdi | |- ( N = 0 -> ( 1 ... N ) = (/) ) |
| 49 | 48 | sumeq1d | |- ( N = 0 -> sum_ k e. ( 1 ... N ) k = sum_ k e. (/) k ) |
| 50 | sum0 | |- sum_ k e. (/) k = 0 |
|
| 51 | 49 50 | eqtrdi | |- ( N = 0 -> sum_ k e. ( 1 ... N ) k = 0 ) |
| 52 | sq0i | |- ( N = 0 -> ( N ^ 2 ) = 0 ) |
|
| 53 | id | |- ( N = 0 -> N = 0 ) |
|
| 54 | 52 53 | oveq12d | |- ( N = 0 -> ( ( N ^ 2 ) + N ) = ( 0 + 0 ) ) |
| 55 | 00id | |- ( 0 + 0 ) = 0 |
|
| 56 | 54 55 | eqtrdi | |- ( N = 0 -> ( ( N ^ 2 ) + N ) = 0 ) |
| 57 | 56 | oveq1d | |- ( N = 0 -> ( ( ( N ^ 2 ) + N ) / 2 ) = ( 0 / 2 ) ) |
| 58 | 2cn | |- 2 e. CC |
|
| 59 | 2ne0 | |- 2 =/= 0 |
|
| 60 | 58 59 | div0i | |- ( 0 / 2 ) = 0 |
| 61 | 57 60 | eqtrdi | |- ( N = 0 -> ( ( ( N ^ 2 ) + N ) / 2 ) = 0 ) |
| 62 | 51 61 | eqtr4d | |- ( N = 0 -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 63 | 45 62 | jaoi | |- ( ( N e. NN \/ N = 0 ) -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 64 | 1 63 | sylbi | |- ( N e. NN0 -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |