This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Arithmetic series sum of the first N positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006) (Proof shortened by Mario Carneiro, 22-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | arisum | ⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 2 | 1zzd | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℤ ) | |
| 3 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 4 | elfzelz | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℤ ) | |
| 5 | 4 | zcnd | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℂ ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 7 | id | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝑘 = ( 𝑗 + 1 ) ) | |
| 8 | 2 2 3 6 7 | fsumshftm | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) ) |
| 9 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 10 | 9 | oveq1i | ⊢ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) = ( 0 ... ( 𝑁 − 1 ) ) |
| 11 | 10 | sumeq1i | ⊢ Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) |
| 12 | 8 11 | eqtrdi | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) ) |
| 13 | elfznn0 | ⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℕ0 ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 15 | bcnp1n | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑗 + 1 ) C 𝑗 ) = ( 𝑗 + 1 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 + 1 ) C 𝑗 ) = ( 𝑗 + 1 ) ) |
| 17 | 14 | nn0cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℂ ) |
| 18 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 19 | addcom | ⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑗 + 1 ) = ( 1 + 𝑗 ) ) | |
| 20 | 17 18 19 | sylancl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) = ( 1 + 𝑗 ) ) |
| 21 | 20 | oveq1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 + 1 ) C 𝑗 ) = ( ( 1 + 𝑗 ) C 𝑗 ) ) |
| 22 | 16 21 | eqtr3d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) = ( ( 1 + 𝑗 ) C 𝑗 ) ) |
| 23 | 22 | sumeq2dv | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 + 𝑗 ) C 𝑗 ) ) |
| 24 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 25 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 26 | bcxmas | ⊢ ( ( 1 ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) C ( 𝑁 − 1 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 + 𝑗 ) C 𝑗 ) ) | |
| 27 | 24 25 26 | sylancr | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) C ( 𝑁 − 1 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 + 𝑗 ) C 𝑗 ) ) |
| 28 | 23 27 | eqtr4d | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) = ( ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) C ( 𝑁 − 1 ) ) ) |
| 29 | 1cnd | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) | |
| 30 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 31 | 29 29 30 | ppncand | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) = ( 1 + 𝑁 ) ) |
| 32 | 29 30 31 | comraddd | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) = ( 𝑁 + 1 ) ) |
| 33 | 32 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) C ( 𝑁 − 1 ) ) = ( ( 𝑁 + 1 ) C ( 𝑁 − 1 ) ) ) |
| 34 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 35 | bcp1m1 | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) C ( 𝑁 − 1 ) ) = ( ( ( 𝑁 + 1 ) · 𝑁 ) / 2 ) ) | |
| 36 | 34 35 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) C ( 𝑁 − 1 ) ) = ( ( ( 𝑁 + 1 ) · 𝑁 ) / 2 ) ) |
| 37 | sqval | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 ↑ 2 ) = ( 𝑁 · 𝑁 ) ) | |
| 38 | 37 | eqcomd | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 · 𝑁 ) = ( 𝑁 ↑ 2 ) ) |
| 39 | mullid | ⊢ ( 𝑁 ∈ ℂ → ( 1 · 𝑁 ) = 𝑁 ) | |
| 40 | 38 39 | oveq12d | ⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 · 𝑁 ) + ( 1 · 𝑁 ) ) = ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) |
| 41 | 30 40 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 · 𝑁 ) + ( 1 · 𝑁 ) ) = ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) |
| 42 | 30 30 29 41 | joinlmuladdmuld | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) · 𝑁 ) = ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) |
| 43 | 42 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) · 𝑁 ) / 2 ) = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |
| 44 | 33 36 43 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) C ( 𝑁 − 1 ) ) = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |
| 45 | 12 28 44 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |
| 46 | oveq2 | ⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ( 1 ... 0 ) ) | |
| 47 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 48 | 46 47 | eqtrdi | ⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ∅ ) |
| 49 | 48 | sumeq1d | ⊢ ( 𝑁 = 0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = Σ 𝑘 ∈ ∅ 𝑘 ) |
| 50 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝑘 = 0 | |
| 51 | 49 50 | eqtrdi | ⊢ ( 𝑁 = 0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = 0 ) |
| 52 | sq0i | ⊢ ( 𝑁 = 0 → ( 𝑁 ↑ 2 ) = 0 ) | |
| 53 | id | ⊢ ( 𝑁 = 0 → 𝑁 = 0 ) | |
| 54 | 52 53 | oveq12d | ⊢ ( 𝑁 = 0 → ( ( 𝑁 ↑ 2 ) + 𝑁 ) = ( 0 + 0 ) ) |
| 55 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 56 | 54 55 | eqtrdi | ⊢ ( 𝑁 = 0 → ( ( 𝑁 ↑ 2 ) + 𝑁 ) = 0 ) |
| 57 | 56 | oveq1d | ⊢ ( 𝑁 = 0 → ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) = ( 0 / 2 ) ) |
| 58 | 2cn | ⊢ 2 ∈ ℂ | |
| 59 | 2ne0 | ⊢ 2 ≠ 0 | |
| 60 | 58 59 | div0i | ⊢ ( 0 / 2 ) = 0 |
| 61 | 57 60 | eqtrdi | ⊢ ( 𝑁 = 0 → ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) = 0 ) |
| 62 | 51 61 | eqtr4d | ⊢ ( 𝑁 = 0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |
| 63 | 45 62 | jaoi | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |
| 64 | 1 63 | sylbi | ⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |