This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binomial coefficient: N + 1 choose N . (Contributed by NM, 20-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcnp1n | |- ( N e. NN0 -> ( ( N + 1 ) _C N ) = ( N + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 2 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 3 | bccmpl | |- ( ( ( N + 1 ) e. NN0 /\ N e. ZZ ) -> ( ( N + 1 ) _C N ) = ( ( N + 1 ) _C ( ( N + 1 ) - N ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( N e. NN0 -> ( ( N + 1 ) _C N ) = ( ( N + 1 ) _C ( ( N + 1 ) - N ) ) ) |
| 5 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 6 | ax-1cn | |- 1 e. CC |
|
| 7 | pncan2 | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - N ) = 1 ) |
|
| 8 | 5 6 7 | sylancl | |- ( N e. NN0 -> ( ( N + 1 ) - N ) = 1 ) |
| 9 | 8 | oveq2d | |- ( N e. NN0 -> ( ( N + 1 ) _C ( ( N + 1 ) - N ) ) = ( ( N + 1 ) _C 1 ) ) |
| 10 | bcn1 | |- ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) _C 1 ) = ( N + 1 ) ) |
|
| 11 | 1 10 | syl | |- ( N e. NN0 -> ( ( N + 1 ) _C 1 ) = ( N + 1 ) ) |
| 12 | 4 9 11 | 3eqtrd | |- ( N e. NN0 -> ( ( N + 1 ) _C N ) = ( N + 1 ) ) |