This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Arithmetic series sum of the first N nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015) (Proof shortened by AV, 2-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | arisum2 | |- ( N e. NN0 -> sum_ k e. ( 0 ... ( N - 1 ) ) k = ( ( ( N ^ 2 ) - N ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 3 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 4 | 2 3 | eleqtrdi | |- ( N e. NN -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
| 5 | elfznn0 | |- ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) |
|
| 6 | 5 | adantl | |- ( ( N e. NN /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. NN0 ) |
| 7 | 6 | nn0cnd | |- ( ( N e. NN /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. CC ) |
| 8 | id | |- ( k = 0 -> k = 0 ) |
|
| 9 | 4 7 8 | fsum1p | |- ( N e. NN -> sum_ k e. ( 0 ... ( N - 1 ) ) k = ( 0 + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) k ) ) |
| 10 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 11 | 10 | oveq1i | |- ( 1 ... ( N - 1 ) ) = ( ( 0 + 1 ) ... ( N - 1 ) ) |
| 12 | 11 | sumeq1i | |- sum_ k e. ( 1 ... ( N - 1 ) ) k = sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) k |
| 13 | 12 | oveq2i | |- ( 0 + sum_ k e. ( 1 ... ( N - 1 ) ) k ) = ( 0 + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) k ) |
| 14 | fzfid | |- ( N e. NN -> ( 1 ... ( N - 1 ) ) e. Fin ) |
|
| 15 | elfznn | |- ( k e. ( 1 ... ( N - 1 ) ) -> k e. NN ) |
|
| 16 | 15 | adantl | |- ( ( N e. NN /\ k e. ( 1 ... ( N - 1 ) ) ) -> k e. NN ) |
| 17 | 16 | nncnd | |- ( ( N e. NN /\ k e. ( 1 ... ( N - 1 ) ) ) -> k e. CC ) |
| 18 | 14 17 | fsumcl | |- ( N e. NN -> sum_ k e. ( 1 ... ( N - 1 ) ) k e. CC ) |
| 19 | 18 | addlidd | |- ( N e. NN -> ( 0 + sum_ k e. ( 1 ... ( N - 1 ) ) k ) = sum_ k e. ( 1 ... ( N - 1 ) ) k ) |
| 20 | 13 19 | eqtr3id | |- ( N e. NN -> ( 0 + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) k ) = sum_ k e. ( 1 ... ( N - 1 ) ) k ) |
| 21 | arisum | |- ( ( N - 1 ) e. NN0 -> sum_ k e. ( 1 ... ( N - 1 ) ) k = ( ( ( ( N - 1 ) ^ 2 ) + ( N - 1 ) ) / 2 ) ) |
|
| 22 | 2 21 | syl | |- ( N e. NN -> sum_ k e. ( 1 ... ( N - 1 ) ) k = ( ( ( ( N - 1 ) ^ 2 ) + ( N - 1 ) ) / 2 ) ) |
| 23 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 24 | 23 | 2timesd | |- ( N e. NN -> ( 2 x. N ) = ( N + N ) ) |
| 25 | 24 | oveq2d | |- ( N e. NN -> ( ( N ^ 2 ) - ( 2 x. N ) ) = ( ( N ^ 2 ) - ( N + N ) ) ) |
| 26 | 23 | sqcld | |- ( N e. NN -> ( N ^ 2 ) e. CC ) |
| 27 | 26 23 23 | subsub4d | |- ( N e. NN -> ( ( ( N ^ 2 ) - N ) - N ) = ( ( N ^ 2 ) - ( N + N ) ) ) |
| 28 | 25 27 | eqtr4d | |- ( N e. NN -> ( ( N ^ 2 ) - ( 2 x. N ) ) = ( ( ( N ^ 2 ) - N ) - N ) ) |
| 29 | 28 | oveq1d | |- ( N e. NN -> ( ( ( N ^ 2 ) - ( 2 x. N ) ) + 1 ) = ( ( ( ( N ^ 2 ) - N ) - N ) + 1 ) ) |
| 30 | binom2sub1 | |- ( N e. CC -> ( ( N - 1 ) ^ 2 ) = ( ( ( N ^ 2 ) - ( 2 x. N ) ) + 1 ) ) |
|
| 31 | 23 30 | syl | |- ( N e. NN -> ( ( N - 1 ) ^ 2 ) = ( ( ( N ^ 2 ) - ( 2 x. N ) ) + 1 ) ) |
| 32 | 26 23 | subcld | |- ( N e. NN -> ( ( N ^ 2 ) - N ) e. CC ) |
| 33 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
| 34 | 32 23 33 | subsubd | |- ( N e. NN -> ( ( ( N ^ 2 ) - N ) - ( N - 1 ) ) = ( ( ( ( N ^ 2 ) - N ) - N ) + 1 ) ) |
| 35 | 29 31 34 | 3eqtr4d | |- ( N e. NN -> ( ( N - 1 ) ^ 2 ) = ( ( ( N ^ 2 ) - N ) - ( N - 1 ) ) ) |
| 36 | 35 | oveq1d | |- ( N e. NN -> ( ( ( N - 1 ) ^ 2 ) + ( N - 1 ) ) = ( ( ( ( N ^ 2 ) - N ) - ( N - 1 ) ) + ( N - 1 ) ) ) |
| 37 | ax-1cn | |- 1 e. CC |
|
| 38 | subcl | |- ( ( N e. CC /\ 1 e. CC ) -> ( N - 1 ) e. CC ) |
|
| 39 | 23 37 38 | sylancl | |- ( N e. NN -> ( N - 1 ) e. CC ) |
| 40 | 32 39 | npcand | |- ( N e. NN -> ( ( ( ( N ^ 2 ) - N ) - ( N - 1 ) ) + ( N - 1 ) ) = ( ( N ^ 2 ) - N ) ) |
| 41 | 36 40 | eqtrd | |- ( N e. NN -> ( ( ( N - 1 ) ^ 2 ) + ( N - 1 ) ) = ( ( N ^ 2 ) - N ) ) |
| 42 | 41 | oveq1d | |- ( N e. NN -> ( ( ( ( N - 1 ) ^ 2 ) + ( N - 1 ) ) / 2 ) = ( ( ( N ^ 2 ) - N ) / 2 ) ) |
| 43 | 22 42 | eqtrd | |- ( N e. NN -> sum_ k e. ( 1 ... ( N - 1 ) ) k = ( ( ( N ^ 2 ) - N ) / 2 ) ) |
| 44 | 20 43 | eqtrd | |- ( N e. NN -> ( 0 + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) k ) = ( ( ( N ^ 2 ) - N ) / 2 ) ) |
| 45 | 9 44 | eqtrd | |- ( N e. NN -> sum_ k e. ( 0 ... ( N - 1 ) ) k = ( ( ( N ^ 2 ) - N ) / 2 ) ) |
| 46 | oveq1 | |- ( N = 0 -> ( N - 1 ) = ( 0 - 1 ) ) |
|
| 47 | 46 | oveq2d | |- ( N = 0 -> ( 0 ... ( N - 1 ) ) = ( 0 ... ( 0 - 1 ) ) ) |
| 48 | 0re | |- 0 e. RR |
|
| 49 | ltm1 | |- ( 0 e. RR -> ( 0 - 1 ) < 0 ) |
|
| 50 | 48 49 | ax-mp | |- ( 0 - 1 ) < 0 |
| 51 | 0z | |- 0 e. ZZ |
|
| 52 | peano2zm | |- ( 0 e. ZZ -> ( 0 - 1 ) e. ZZ ) |
|
| 53 | 51 52 | ax-mp | |- ( 0 - 1 ) e. ZZ |
| 54 | fzn | |- ( ( 0 e. ZZ /\ ( 0 - 1 ) e. ZZ ) -> ( ( 0 - 1 ) < 0 <-> ( 0 ... ( 0 - 1 ) ) = (/) ) ) |
|
| 55 | 51 53 54 | mp2an | |- ( ( 0 - 1 ) < 0 <-> ( 0 ... ( 0 - 1 ) ) = (/) ) |
| 56 | 50 55 | mpbi | |- ( 0 ... ( 0 - 1 ) ) = (/) |
| 57 | 47 56 | eqtrdi | |- ( N = 0 -> ( 0 ... ( N - 1 ) ) = (/) ) |
| 58 | 57 | sumeq1d | |- ( N = 0 -> sum_ k e. ( 0 ... ( N - 1 ) ) k = sum_ k e. (/) k ) |
| 59 | sum0 | |- sum_ k e. (/) k = 0 |
|
| 60 | 58 59 | eqtrdi | |- ( N = 0 -> sum_ k e. ( 0 ... ( N - 1 ) ) k = 0 ) |
| 61 | sq0i | |- ( N = 0 -> ( N ^ 2 ) = 0 ) |
|
| 62 | id | |- ( N = 0 -> N = 0 ) |
|
| 63 | 61 62 | oveq12d | |- ( N = 0 -> ( ( N ^ 2 ) - N ) = ( 0 - 0 ) ) |
| 64 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 65 | 63 64 | eqtrdi | |- ( N = 0 -> ( ( N ^ 2 ) - N ) = 0 ) |
| 66 | 65 | oveq1d | |- ( N = 0 -> ( ( ( N ^ 2 ) - N ) / 2 ) = ( 0 / 2 ) ) |
| 67 | 2cn | |- 2 e. CC |
|
| 68 | 2ne0 | |- 2 =/= 0 |
|
| 69 | 67 68 | div0i | |- ( 0 / 2 ) = 0 |
| 70 | 66 69 | eqtrdi | |- ( N = 0 -> ( ( ( N ^ 2 ) - N ) / 2 ) = 0 ) |
| 71 | 60 70 | eqtr4d | |- ( N = 0 -> sum_ k e. ( 0 ... ( N - 1 ) ) k = ( ( ( N ^ 2 ) - N ) / 2 ) ) |
| 72 | 45 71 | jaoi | |- ( ( N e. NN \/ N = 0 ) -> sum_ k e. ( 0 ... ( N - 1 ) ) k = ( ( ( N ^ 2 ) - N ) / 2 ) ) |
| 73 | 1 72 | sylbi | |- ( N e. NN0 -> sum_ k e. ( 0 ... ( N - 1 ) ) k = ( ( ( N ^ 2 ) - N ) / 2 ) ) |