This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compute the binomial coefficient of ( N + 1 ) over ( N - 1 ) (Contributed by Scott Fenton, 11-May-2014) (Revised by Mario Carneiro, 22-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcp1m1 | |- ( N e. NN0 -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 2 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 3 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 4 | 2 3 | syl | |- ( N e. NN0 -> ( N - 1 ) e. ZZ ) |
| 5 | bccmpl | |- ( ( ( N + 1 ) e. NN0 /\ ( N - 1 ) e. ZZ ) -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( N + 1 ) _C ( ( N + 1 ) - ( N - 1 ) ) ) ) |
|
| 6 | 1 4 5 | syl2anc | |- ( N e. NN0 -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( N + 1 ) _C ( ( N + 1 ) - ( N - 1 ) ) ) ) |
| 7 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 8 | 1cnd | |- ( N e. NN0 -> 1 e. CC ) |
|
| 9 | 7 8 8 | pnncand | |- ( N e. NN0 -> ( ( N + 1 ) - ( N - 1 ) ) = ( 1 + 1 ) ) |
| 10 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 11 | 9 10 | eqtr4di | |- ( N e. NN0 -> ( ( N + 1 ) - ( N - 1 ) ) = 2 ) |
| 12 | 11 | oveq2d | |- ( N e. NN0 -> ( ( N + 1 ) _C ( ( N + 1 ) - ( N - 1 ) ) ) = ( ( N + 1 ) _C 2 ) ) |
| 13 | bcn2 | |- ( ( N + 1 ) e. NN0 -> ( ( N + 1 ) _C 2 ) = ( ( ( N + 1 ) x. ( ( N + 1 ) - 1 ) ) / 2 ) ) |
|
| 14 | 1 13 | syl | |- ( N e. NN0 -> ( ( N + 1 ) _C 2 ) = ( ( ( N + 1 ) x. ( ( N + 1 ) - 1 ) ) / 2 ) ) |
| 15 | ax-1cn | |- 1 e. CC |
|
| 16 | pncan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
|
| 17 | 7 15 16 | sylancl | |- ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) |
| 18 | 17 | oveq2d | |- ( N e. NN0 -> ( ( N + 1 ) x. ( ( N + 1 ) - 1 ) ) = ( ( N + 1 ) x. N ) ) |
| 19 | 18 | oveq1d | |- ( N e. NN0 -> ( ( ( N + 1 ) x. ( ( N + 1 ) - 1 ) ) / 2 ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |
| 20 | 14 19 | eqtrd | |- ( N e. NN0 -> ( ( N + 1 ) _C 2 ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |
| 21 | 12 20 | eqtrd | |- ( N e. NN0 -> ( ( N + 1 ) _C ( ( N + 1 ) - ( N - 1 ) ) ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |
| 22 | 6 21 | eqtrd | |- ( N e. NN0 -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |