This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcxmas | |- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( ( N + 1 ) + M ) _C M ) = sum_ j e. ( 0 ... M ) ( ( N + j ) _C j ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcxmaslem1 | |- ( m = 0 -> ( ( ( N + 1 ) + m ) _C m ) = ( ( ( N + 1 ) + 0 ) _C 0 ) ) |
|
| 2 | oveq2 | |- ( m = 0 -> ( 0 ... m ) = ( 0 ... 0 ) ) |
|
| 3 | 2 | sumeq1d | |- ( m = 0 -> sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) = sum_ j e. ( 0 ... 0 ) ( ( N + j ) _C j ) ) |
| 4 | 1 3 | eqeq12d | |- ( m = 0 -> ( ( ( ( N + 1 ) + m ) _C m ) = sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) <-> ( ( ( N + 1 ) + 0 ) _C 0 ) = sum_ j e. ( 0 ... 0 ) ( ( N + j ) _C j ) ) ) |
| 5 | bcxmaslem1 | |- ( m = k -> ( ( ( N + 1 ) + m ) _C m ) = ( ( ( N + 1 ) + k ) _C k ) ) |
|
| 6 | oveq2 | |- ( m = k -> ( 0 ... m ) = ( 0 ... k ) ) |
|
| 7 | 6 | sumeq1d | |- ( m = k -> sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) |
| 8 | 5 7 | eqeq12d | |- ( m = k -> ( ( ( ( N + 1 ) + m ) _C m ) = sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) <-> ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) ) |
| 9 | bcxmaslem1 | |- ( m = ( k + 1 ) -> ( ( ( N + 1 ) + m ) _C m ) = ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) ) |
|
| 10 | oveq2 | |- ( m = ( k + 1 ) -> ( 0 ... m ) = ( 0 ... ( k + 1 ) ) ) |
|
| 11 | 10 | sumeq1d | |- ( m = ( k + 1 ) -> sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) = sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) ) |
| 12 | 9 11 | eqeq12d | |- ( m = ( k + 1 ) -> ( ( ( ( N + 1 ) + m ) _C m ) = sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) <-> ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) = sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) ) ) |
| 13 | bcxmaslem1 | |- ( m = M -> ( ( ( N + 1 ) + m ) _C m ) = ( ( ( N + 1 ) + M ) _C M ) ) |
|
| 14 | oveq2 | |- ( m = M -> ( 0 ... m ) = ( 0 ... M ) ) |
|
| 15 | 14 | sumeq1d | |- ( m = M -> sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) = sum_ j e. ( 0 ... M ) ( ( N + j ) _C j ) ) |
| 16 | 13 15 | eqeq12d | |- ( m = M -> ( ( ( ( N + 1 ) + m ) _C m ) = sum_ j e. ( 0 ... m ) ( ( N + j ) _C j ) <-> ( ( ( N + 1 ) + M ) _C M ) = sum_ j e. ( 0 ... M ) ( ( N + j ) _C j ) ) ) |
| 17 | 0nn0 | |- 0 e. NN0 |
|
| 18 | nn0addcl | |- ( ( N e. NN0 /\ 0 e. NN0 ) -> ( N + 0 ) e. NN0 ) |
|
| 19 | bcn0 | |- ( ( N + 0 ) e. NN0 -> ( ( N + 0 ) _C 0 ) = 1 ) |
|
| 20 | 18 19 | syl | |- ( ( N e. NN0 /\ 0 e. NN0 ) -> ( ( N + 0 ) _C 0 ) = 1 ) |
| 21 | 17 20 | mpan2 | |- ( N e. NN0 -> ( ( N + 0 ) _C 0 ) = 1 ) |
| 22 | 0z | |- 0 e. ZZ |
|
| 23 | 1nn0 | |- 1 e. NN0 |
|
| 24 | 21 23 | eqeltrdi | |- ( N e. NN0 -> ( ( N + 0 ) _C 0 ) e. NN0 ) |
| 25 | 24 | nn0cnd | |- ( N e. NN0 -> ( ( N + 0 ) _C 0 ) e. CC ) |
| 26 | bcxmaslem1 | |- ( j = 0 -> ( ( N + j ) _C j ) = ( ( N + 0 ) _C 0 ) ) |
|
| 27 | 26 | fsum1 | |- ( ( 0 e. ZZ /\ ( ( N + 0 ) _C 0 ) e. CC ) -> sum_ j e. ( 0 ... 0 ) ( ( N + j ) _C j ) = ( ( N + 0 ) _C 0 ) ) |
| 28 | 22 25 27 | sylancr | |- ( N e. NN0 -> sum_ j e. ( 0 ... 0 ) ( ( N + j ) _C j ) = ( ( N + 0 ) _C 0 ) ) |
| 29 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 30 | nn0addcl | |- ( ( ( N + 1 ) e. NN0 /\ 0 e. NN0 ) -> ( ( N + 1 ) + 0 ) e. NN0 ) |
|
| 31 | 29 17 30 | sylancl | |- ( N e. NN0 -> ( ( N + 1 ) + 0 ) e. NN0 ) |
| 32 | bcn0 | |- ( ( ( N + 1 ) + 0 ) e. NN0 -> ( ( ( N + 1 ) + 0 ) _C 0 ) = 1 ) |
|
| 33 | 31 32 | syl | |- ( N e. NN0 -> ( ( ( N + 1 ) + 0 ) _C 0 ) = 1 ) |
| 34 | 21 28 33 | 3eqtr4rd | |- ( N e. NN0 -> ( ( ( N + 1 ) + 0 ) _C 0 ) = sum_ j e. ( 0 ... 0 ) ( ( N + j ) _C j ) ) |
| 35 | simpr | |- ( ( N e. NN0 /\ k e. NN0 ) -> k e. NN0 ) |
|
| 36 | elnn0uz | |- ( k e. NN0 <-> k e. ( ZZ>= ` 0 ) ) |
|
| 37 | 35 36 | sylib | |- ( ( N e. NN0 /\ k e. NN0 ) -> k e. ( ZZ>= ` 0 ) ) |
| 38 | simpl | |- ( ( N e. NN0 /\ k e. NN0 ) -> N e. NN0 ) |
|
| 39 | elfznn0 | |- ( j e. ( 0 ... ( k + 1 ) ) -> j e. NN0 ) |
|
| 40 | nn0addcl | |- ( ( N e. NN0 /\ j e. NN0 ) -> ( N + j ) e. NN0 ) |
|
| 41 | 38 39 40 | syl2an | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ j e. ( 0 ... ( k + 1 ) ) ) -> ( N + j ) e. NN0 ) |
| 42 | elfzelz | |- ( j e. ( 0 ... ( k + 1 ) ) -> j e. ZZ ) |
|
| 43 | 42 | adantl | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ j e. ( 0 ... ( k + 1 ) ) ) -> j e. ZZ ) |
| 44 | bccl | |- ( ( ( N + j ) e. NN0 /\ j e. ZZ ) -> ( ( N + j ) _C j ) e. NN0 ) |
|
| 45 | 41 43 44 | syl2anc | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ j e. ( 0 ... ( k + 1 ) ) ) -> ( ( N + j ) _C j ) e. NN0 ) |
| 46 | 45 | nn0cnd | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ j e. ( 0 ... ( k + 1 ) ) ) -> ( ( N + j ) _C j ) e. CC ) |
| 47 | bcxmaslem1 | |- ( j = ( k + 1 ) -> ( ( N + j ) _C j ) = ( ( N + ( k + 1 ) ) _C ( k + 1 ) ) ) |
|
| 48 | 37 46 47 | fsump1 | |- ( ( N e. NN0 /\ k e. NN0 ) -> sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( N + ( k + 1 ) ) _C ( k + 1 ) ) ) ) |
| 49 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 50 | 49 | adantr | |- ( ( N e. NN0 /\ k e. NN0 ) -> N e. CC ) |
| 51 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 52 | 51 | adantl | |- ( ( N e. NN0 /\ k e. NN0 ) -> k e. CC ) |
| 53 | 1cnd | |- ( ( N e. NN0 /\ k e. NN0 ) -> 1 e. CC ) |
|
| 54 | add32r | |- ( ( N e. CC /\ k e. CC /\ 1 e. CC ) -> ( N + ( k + 1 ) ) = ( ( N + 1 ) + k ) ) |
|
| 55 | 50 52 53 54 | syl3anc | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + ( k + 1 ) ) = ( ( N + 1 ) + k ) ) |
| 56 | 55 | oveq1d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + ( k + 1 ) ) _C ( k + 1 ) ) = ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) |
| 57 | 56 | oveq2d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( N + ( k + 1 ) ) _C ( k + 1 ) ) ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
| 58 | 48 57 | eqtrd | |- ( ( N e. NN0 /\ k e. NN0 ) -> sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
| 59 | 58 | adantr | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) -> sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
| 60 | oveq1 | |- ( ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) -> ( ( ( ( N + 1 ) + k ) _C k ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
|
| 61 | 60 | adantl | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) -> ( ( ( ( N + 1 ) + k ) _C k ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) = ( sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
| 62 | ax-1cn | |- 1 e. CC |
|
| 63 | pncan | |- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
|
| 64 | 52 62 63 | sylancl | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( k + 1 ) - 1 ) = k ) |
| 65 | 64 | oveq2d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C ( ( k + 1 ) - 1 ) ) = ( ( ( N + 1 ) + k ) _C k ) ) |
| 66 | 65 | oveq2d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C ( ( k + 1 ) - 1 ) ) ) = ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C k ) ) ) |
| 67 | nn0addcl | |- ( ( ( N + 1 ) e. NN0 /\ k e. NN0 ) -> ( ( N + 1 ) + k ) e. NN0 ) |
|
| 68 | 29 67 | sylan | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + 1 ) + k ) e. NN0 ) |
| 69 | nn0p1nn | |- ( k e. NN0 -> ( k + 1 ) e. NN ) |
|
| 70 | 69 | adantl | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( k + 1 ) e. NN ) |
| 71 | 70 | nnzd | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( k + 1 ) e. ZZ ) |
| 72 | bcpasc | |- ( ( ( ( N + 1 ) + k ) e. NN0 /\ ( k + 1 ) e. ZZ ) -> ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C ( ( k + 1 ) - 1 ) ) ) = ( ( ( ( N + 1 ) + k ) + 1 ) _C ( k + 1 ) ) ) |
|
| 73 | 68 71 72 | syl2anc | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C ( ( k + 1 ) - 1 ) ) ) = ( ( ( ( N + 1 ) + k ) + 1 ) _C ( k + 1 ) ) ) |
| 74 | 66 73 | eqtr3d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C k ) ) = ( ( ( ( N + 1 ) + k ) + 1 ) _C ( k + 1 ) ) ) |
| 75 | nn0p1nn | |- ( N e. NN0 -> ( N + 1 ) e. NN ) |
|
| 76 | nnnn0addcl | |- ( ( ( N + 1 ) e. NN /\ k e. NN0 ) -> ( ( N + 1 ) + k ) e. NN ) |
|
| 77 | 75 76 | sylan | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + 1 ) + k ) e. NN ) |
| 78 | 77 | nnnn0d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + 1 ) + k ) e. NN0 ) |
| 79 | bccl | |- ( ( ( ( N + 1 ) + k ) e. NN0 /\ ( k + 1 ) e. ZZ ) -> ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) e. NN0 ) |
|
| 80 | 78 71 79 | syl2anc | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) e. NN0 ) |
| 81 | 80 | nn0cnd | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) e. CC ) |
| 82 | nn0z | |- ( k e. NN0 -> k e. ZZ ) |
|
| 83 | 82 | adantl | |- ( ( ( N + 1 ) e. NN0 /\ k e. NN0 ) -> k e. ZZ ) |
| 84 | bccl | |- ( ( ( ( N + 1 ) + k ) e. NN0 /\ k e. ZZ ) -> ( ( ( N + 1 ) + k ) _C k ) e. NN0 ) |
|
| 85 | 67 83 84 | syl2anc | |- ( ( ( N + 1 ) e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C k ) e. NN0 ) |
| 86 | 29 85 | sylan | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C k ) e. NN0 ) |
| 87 | 86 | nn0cnd | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) _C k ) e. CC ) |
| 88 | 81 87 | addcomd | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) + ( ( ( N + 1 ) + k ) _C k ) ) = ( ( ( ( N + 1 ) + k ) _C k ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) ) |
| 89 | peano2cn | |- ( N e. CC -> ( N + 1 ) e. CC ) |
|
| 90 | 49 89 | syl | |- ( N e. NN0 -> ( N + 1 ) e. CC ) |
| 91 | 90 | adantr | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + 1 ) e. CC ) |
| 92 | 91 52 53 | addassd | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) + k ) + 1 ) = ( ( N + 1 ) + ( k + 1 ) ) ) |
| 93 | 92 | oveq1d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) + 1 ) _C ( k + 1 ) ) = ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) ) |
| 94 | 74 88 93 | 3eqtr3d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( N + 1 ) + k ) _C k ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) = ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) ) |
| 95 | 94 | adantr | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) -> ( ( ( ( N + 1 ) + k ) _C k ) + ( ( ( N + 1 ) + k ) _C ( k + 1 ) ) ) = ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) ) |
| 96 | 59 61 95 | 3eqtr2rd | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ( N + 1 ) + k ) _C k ) = sum_ j e. ( 0 ... k ) ( ( N + j ) _C j ) ) -> ( ( ( N + 1 ) + ( k + 1 ) ) _C ( k + 1 ) ) = sum_ j e. ( 0 ... ( k + 1 ) ) ( ( N + j ) _C j ) ) |
| 97 | 4 8 12 16 34 96 | nn0indd | |- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( ( N + 1 ) + M ) _C M ) = sum_ j e. ( 0 ... M ) ( ( N + j ) _C j ) ) |