This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 4sq.2 | |- ( ph -> N e. NN ) |
||
| 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
||
| 4sq.4 | |- ( ph -> P e. Prime ) |
||
| 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
||
| 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
||
| 4sq.7 | |- M = inf ( T , RR , < ) |
||
| 4sq.m | |- ( ph -> M e. ( ZZ>= ` 2 ) ) |
||
| 4sq.a | |- ( ph -> A e. ZZ ) |
||
| 4sq.b | |- ( ph -> B e. ZZ ) |
||
| 4sq.c | |- ( ph -> C e. ZZ ) |
||
| 4sq.d | |- ( ph -> D e. ZZ ) |
||
| 4sq.e | |- E = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.f | |- F = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.g | |- G = ( ( ( C + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.h | |- H = ( ( ( D + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.r | |- R = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) |
||
| 4sq.p | |- ( ph -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
||
| Assertion | 4sqlem17 | |- -. ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 2 | 4sq.2 | |- ( ph -> N e. NN ) |
|
| 3 | 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
|
| 4 | 4sq.4 | |- ( ph -> P e. Prime ) |
|
| 5 | 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
|
| 6 | 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
|
| 7 | 4sq.7 | |- M = inf ( T , RR , < ) |
|
| 8 | 4sq.m | |- ( ph -> M e. ( ZZ>= ` 2 ) ) |
|
| 9 | 4sq.a | |- ( ph -> A e. ZZ ) |
|
| 10 | 4sq.b | |- ( ph -> B e. ZZ ) |
|
| 11 | 4sq.c | |- ( ph -> C e. ZZ ) |
|
| 12 | 4sq.d | |- ( ph -> D e. ZZ ) |
|
| 13 | 4sq.e | |- E = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 14 | 4sq.f | |- F = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 15 | 4sq.g | |- G = ( ( ( C + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 16 | 4sq.h | |- H = ( ( ( D + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 17 | 4sq.r | |- R = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) |
|
| 18 | 4sq.p | |- ( ph -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
|
| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 4sqlem16 | |- ( ph -> ( R <_ M /\ ( ( R = 0 \/ R = M ) -> ( M ^ 2 ) || ( M x. P ) ) ) ) |
| 20 | 19 | simpld | |- ( ph -> R <_ M ) |
| 21 | 6 | ssrab3 | |- T C_ NN |
| 22 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 23 | 21 22 | sseqtri | |- T C_ ( ZZ>= ` 1 ) |
| 24 | 1 2 3 4 5 6 7 | 4sqlem13 | |- ( ph -> ( T =/= (/) /\ M < P ) ) |
| 25 | 24 | simpld | |- ( ph -> T =/= (/) ) |
| 26 | infssuzcl | |- ( ( T C_ ( ZZ>= ` 1 ) /\ T =/= (/) ) -> inf ( T , RR , < ) e. T ) |
|
| 27 | 23 25 26 | sylancr | |- ( ph -> inf ( T , RR , < ) e. T ) |
| 28 | 7 27 | eqeltrid | |- ( ph -> M e. T ) |
| 29 | 21 28 | sselid | |- ( ph -> M e. NN ) |
| 30 | 29 | nnred | |- ( ph -> M e. RR ) |
| 31 | 24 | simprd | |- ( ph -> M < P ) |
| 32 | 30 31 | ltned | |- ( ph -> M =/= P ) |
| 33 | 29 | nncnd | |- ( ph -> M e. CC ) |
| 34 | 33 | sqvald | |- ( ph -> ( M ^ 2 ) = ( M x. M ) ) |
| 35 | 34 | breq1d | |- ( ph -> ( ( M ^ 2 ) || ( M x. P ) <-> ( M x. M ) || ( M x. P ) ) ) |
| 36 | 29 | nnzd | |- ( ph -> M e. ZZ ) |
| 37 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 38 | 4 37 | syl | |- ( ph -> P e. ZZ ) |
| 39 | 29 | nnne0d | |- ( ph -> M =/= 0 ) |
| 40 | dvdscmulr | |- ( ( M e. ZZ /\ P e. ZZ /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( ( M x. M ) || ( M x. P ) <-> M || P ) ) |
|
| 41 | 36 38 36 39 40 | syl112anc | |- ( ph -> ( ( M x. M ) || ( M x. P ) <-> M || P ) ) |
| 42 | dvdsprm | |- ( ( M e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( M || P <-> M = P ) ) |
|
| 43 | 8 4 42 | syl2anc | |- ( ph -> ( M || P <-> M = P ) ) |
| 44 | 35 41 43 | 3bitrd | |- ( ph -> ( ( M ^ 2 ) || ( M x. P ) <-> M = P ) ) |
| 45 | 44 | necon3bbid | |- ( ph -> ( -. ( M ^ 2 ) || ( M x. P ) <-> M =/= P ) ) |
| 46 | 32 45 | mpbird | |- ( ph -> -. ( M ^ 2 ) || ( M x. P ) ) |
| 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 4sqlem14 | |- ( ph -> R e. NN0 ) |
| 48 | elnn0 | |- ( R e. NN0 <-> ( R e. NN \/ R = 0 ) ) |
|
| 49 | 47 48 | sylib | |- ( ph -> ( R e. NN \/ R = 0 ) ) |
| 50 | 49 | ord | |- ( ph -> ( -. R e. NN -> R = 0 ) ) |
| 51 | orc | |- ( R = 0 -> ( R = 0 \/ R = M ) ) |
|
| 52 | 19 | simprd | |- ( ph -> ( ( R = 0 \/ R = M ) -> ( M ^ 2 ) || ( M x. P ) ) ) |
| 53 | 51 52 | syl5 | |- ( ph -> ( R = 0 -> ( M ^ 2 ) || ( M x. P ) ) ) |
| 54 | 50 53 | syld | |- ( ph -> ( -. R e. NN -> ( M ^ 2 ) || ( M x. P ) ) ) |
| 55 | 46 54 | mt3d | |- ( ph -> R e. NN ) |
| 56 | gzreim | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + ( _i x. B ) ) e. Z[i] ) |
|
| 57 | 9 10 56 | syl2anc | |- ( ph -> ( A + ( _i x. B ) ) e. Z[i] ) |
| 58 | gzcn | |- ( ( A + ( _i x. B ) ) e. Z[i] -> ( A + ( _i x. B ) ) e. CC ) |
|
| 59 | 57 58 | syl | |- ( ph -> ( A + ( _i x. B ) ) e. CC ) |
| 60 | 59 | absvalsq2d | |- ( ph -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) ) ) |
| 61 | 9 | zred | |- ( ph -> A e. RR ) |
| 62 | 10 | zred | |- ( ph -> B e. RR ) |
| 63 | 61 62 | crred | |- ( ph -> ( Re ` ( A + ( _i x. B ) ) ) = A ) |
| 64 | 63 | oveq1d | |- ( ph -> ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( A ^ 2 ) ) |
| 65 | 61 62 | crimd | |- ( ph -> ( Im ` ( A + ( _i x. B ) ) ) = B ) |
| 66 | 65 | oveq1d | |- ( ph -> ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( B ^ 2 ) ) |
| 67 | 64 66 | oveq12d | |- ( ph -> ( ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 68 | 60 67 | eqtrd | |- ( ph -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 69 | gzreim | |- ( ( C e. ZZ /\ D e. ZZ ) -> ( C + ( _i x. D ) ) e. Z[i] ) |
|
| 70 | 11 12 69 | syl2anc | |- ( ph -> ( C + ( _i x. D ) ) e. Z[i] ) |
| 71 | gzcn | |- ( ( C + ( _i x. D ) ) e. Z[i] -> ( C + ( _i x. D ) ) e. CC ) |
|
| 72 | 70 71 | syl | |- ( ph -> ( C + ( _i x. D ) ) e. CC ) |
| 73 | 72 | absvalsq2d | |- ( ph -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) + ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) ) ) |
| 74 | 11 | zred | |- ( ph -> C e. RR ) |
| 75 | 12 | zred | |- ( ph -> D e. RR ) |
| 76 | 74 75 | crred | |- ( ph -> ( Re ` ( C + ( _i x. D ) ) ) = C ) |
| 77 | 76 | oveq1d | |- ( ph -> ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( C ^ 2 ) ) |
| 78 | 74 75 | crimd | |- ( ph -> ( Im ` ( C + ( _i x. D ) ) ) = D ) |
| 79 | 78 | oveq1d | |- ( ph -> ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( D ^ 2 ) ) |
| 80 | 77 79 | oveq12d | |- ( ph -> ( ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) + ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
| 81 | 73 80 | eqtrd | |- ( ph -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
| 82 | 68 81 | oveq12d | |- ( ph -> ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 83 | 18 82 | eqtr4d | |- ( ph -> ( M x. P ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) ) |
| 84 | 83 | oveq1d | |- ( ph -> ( ( M x. P ) / M ) = ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) ) |
| 85 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 86 | 4 85 | syl | |- ( ph -> P e. NN ) |
| 87 | 86 | nncnd | |- ( ph -> P e. CC ) |
| 88 | 87 33 39 | divcan3d | |- ( ph -> ( ( M x. P ) / M ) = P ) |
| 89 | 84 88 | eqtr3d | |- ( ph -> ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) = P ) |
| 90 | 9 29 13 | 4sqlem5 | |- ( ph -> ( E e. ZZ /\ ( ( A - E ) / M ) e. ZZ ) ) |
| 91 | 90 | simpld | |- ( ph -> E e. ZZ ) |
| 92 | 10 29 14 | 4sqlem5 | |- ( ph -> ( F e. ZZ /\ ( ( B - F ) / M ) e. ZZ ) ) |
| 93 | 92 | simpld | |- ( ph -> F e. ZZ ) |
| 94 | gzreim | |- ( ( E e. ZZ /\ F e. ZZ ) -> ( E + ( _i x. F ) ) e. Z[i] ) |
|
| 95 | 91 93 94 | syl2anc | |- ( ph -> ( E + ( _i x. F ) ) e. Z[i] ) |
| 96 | gzcn | |- ( ( E + ( _i x. F ) ) e. Z[i] -> ( E + ( _i x. F ) ) e. CC ) |
|
| 97 | 95 96 | syl | |- ( ph -> ( E + ( _i x. F ) ) e. CC ) |
| 98 | 97 | absvalsq2d | |- ( ph -> ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( ( ( Re ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( Im ` ( E + ( _i x. F ) ) ) ^ 2 ) ) ) |
| 99 | 91 | zred | |- ( ph -> E e. RR ) |
| 100 | 93 | zred | |- ( ph -> F e. RR ) |
| 101 | 99 100 | crred | |- ( ph -> ( Re ` ( E + ( _i x. F ) ) ) = E ) |
| 102 | 101 | oveq1d | |- ( ph -> ( ( Re ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( E ^ 2 ) ) |
| 103 | 99 100 | crimd | |- ( ph -> ( Im ` ( E + ( _i x. F ) ) ) = F ) |
| 104 | 103 | oveq1d | |- ( ph -> ( ( Im ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( F ^ 2 ) ) |
| 105 | 102 104 | oveq12d | |- ( ph -> ( ( ( Re ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( Im ` ( E + ( _i x. F ) ) ) ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 106 | 98 105 | eqtrd | |- ( ph -> ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 107 | 11 29 15 | 4sqlem5 | |- ( ph -> ( G e. ZZ /\ ( ( C - G ) / M ) e. ZZ ) ) |
| 108 | 107 | simpld | |- ( ph -> G e. ZZ ) |
| 109 | 12 29 16 | 4sqlem5 | |- ( ph -> ( H e. ZZ /\ ( ( D - H ) / M ) e. ZZ ) ) |
| 110 | 109 | simpld | |- ( ph -> H e. ZZ ) |
| 111 | gzreim | |- ( ( G e. ZZ /\ H e. ZZ ) -> ( G + ( _i x. H ) ) e. Z[i] ) |
|
| 112 | 108 110 111 | syl2anc | |- ( ph -> ( G + ( _i x. H ) ) e. Z[i] ) |
| 113 | gzcn | |- ( ( G + ( _i x. H ) ) e. Z[i] -> ( G + ( _i x. H ) ) e. CC ) |
|
| 114 | 112 113 | syl | |- ( ph -> ( G + ( _i x. H ) ) e. CC ) |
| 115 | 114 | absvalsq2d | |- ( ph -> ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( ( ( Re ` ( G + ( _i x. H ) ) ) ^ 2 ) + ( ( Im ` ( G + ( _i x. H ) ) ) ^ 2 ) ) ) |
| 116 | 108 | zred | |- ( ph -> G e. RR ) |
| 117 | 110 | zred | |- ( ph -> H e. RR ) |
| 118 | 116 117 | crred | |- ( ph -> ( Re ` ( G + ( _i x. H ) ) ) = G ) |
| 119 | 118 | oveq1d | |- ( ph -> ( ( Re ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( G ^ 2 ) ) |
| 120 | 116 117 | crimd | |- ( ph -> ( Im ` ( G + ( _i x. H ) ) ) = H ) |
| 121 | 120 | oveq1d | |- ( ph -> ( ( Im ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( H ^ 2 ) ) |
| 122 | 119 121 | oveq12d | |- ( ph -> ( ( ( Re ` ( G + ( _i x. H ) ) ) ^ 2 ) + ( ( Im ` ( G + ( _i x. H ) ) ) ^ 2 ) ) = ( ( G ^ 2 ) + ( H ^ 2 ) ) ) |
| 123 | 115 122 | eqtrd | |- ( ph -> ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( ( G ^ 2 ) + ( H ^ 2 ) ) ) |
| 124 | 106 123 | oveq12d | |- ( ph -> ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) = ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 125 | 124 | oveq1d | |- ( ph -> ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) ) |
| 126 | 125 17 | eqtr4di | |- ( ph -> ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) = R ) |
| 127 | 89 126 | oveq12d | |- ( ph -> ( ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) x. ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) ) = ( P x. R ) ) |
| 128 | 55 | nncnd | |- ( ph -> R e. CC ) |
| 129 | 87 128 | mulcomd | |- ( ph -> ( P x. R ) = ( R x. P ) ) |
| 130 | 127 129 | eqtrd | |- ( ph -> ( ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) x. ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) ) = ( R x. P ) ) |
| 131 | eqid | |- ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) |
|
| 132 | eqid | |- ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) = ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) |
|
| 133 | 9 | zcnd | |- ( ph -> A e. CC ) |
| 134 | ax-icn | |- _i e. CC |
|
| 135 | 10 | zcnd | |- ( ph -> B e. CC ) |
| 136 | mulcl | |- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
|
| 137 | 134 135 136 | sylancr | |- ( ph -> ( _i x. B ) e. CC ) |
| 138 | 91 | zcnd | |- ( ph -> E e. CC ) |
| 139 | 93 | zcnd | |- ( ph -> F e. CC ) |
| 140 | mulcl | |- ( ( _i e. CC /\ F e. CC ) -> ( _i x. F ) e. CC ) |
|
| 141 | 134 139 140 | sylancr | |- ( ph -> ( _i x. F ) e. CC ) |
| 142 | 133 137 138 141 | addsub4d | |- ( ph -> ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) = ( ( A - E ) + ( ( _i x. B ) - ( _i x. F ) ) ) ) |
| 143 | 134 | a1i | |- ( ph -> _i e. CC ) |
| 144 | 143 135 139 | subdid | |- ( ph -> ( _i x. ( B - F ) ) = ( ( _i x. B ) - ( _i x. F ) ) ) |
| 145 | 144 | oveq2d | |- ( ph -> ( ( A - E ) + ( _i x. ( B - F ) ) ) = ( ( A - E ) + ( ( _i x. B ) - ( _i x. F ) ) ) ) |
| 146 | 142 145 | eqtr4d | |- ( ph -> ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) = ( ( A - E ) + ( _i x. ( B - F ) ) ) ) |
| 147 | 146 | oveq1d | |- ( ph -> ( ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) / M ) = ( ( ( A - E ) + ( _i x. ( B - F ) ) ) / M ) ) |
| 148 | 133 138 | subcld | |- ( ph -> ( A - E ) e. CC ) |
| 149 | 135 139 | subcld | |- ( ph -> ( B - F ) e. CC ) |
| 150 | mulcl | |- ( ( _i e. CC /\ ( B - F ) e. CC ) -> ( _i x. ( B - F ) ) e. CC ) |
|
| 151 | 134 149 150 | sylancr | |- ( ph -> ( _i x. ( B - F ) ) e. CC ) |
| 152 | 148 151 33 39 | divdird | |- ( ph -> ( ( ( A - E ) + ( _i x. ( B - F ) ) ) / M ) = ( ( ( A - E ) / M ) + ( ( _i x. ( B - F ) ) / M ) ) ) |
| 153 | 143 149 33 39 | divassd | |- ( ph -> ( ( _i x. ( B - F ) ) / M ) = ( _i x. ( ( B - F ) / M ) ) ) |
| 154 | 153 | oveq2d | |- ( ph -> ( ( ( A - E ) / M ) + ( ( _i x. ( B - F ) ) / M ) ) = ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) ) |
| 155 | 147 152 154 | 3eqtrd | |- ( ph -> ( ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) / M ) = ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) ) |
| 156 | 90 | simprd | |- ( ph -> ( ( A - E ) / M ) e. ZZ ) |
| 157 | 92 | simprd | |- ( ph -> ( ( B - F ) / M ) e. ZZ ) |
| 158 | gzreim | |- ( ( ( ( A - E ) / M ) e. ZZ /\ ( ( B - F ) / M ) e. ZZ ) -> ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) e. Z[i] ) |
|
| 159 | 156 157 158 | syl2anc | |- ( ph -> ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) e. Z[i] ) |
| 160 | 155 159 | eqeltrd | |- ( ph -> ( ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) / M ) e. Z[i] ) |
| 161 | 11 | zcnd | |- ( ph -> C e. CC ) |
| 162 | 12 | zcnd | |- ( ph -> D e. CC ) |
| 163 | mulcl | |- ( ( _i e. CC /\ D e. CC ) -> ( _i x. D ) e. CC ) |
|
| 164 | 134 162 163 | sylancr | |- ( ph -> ( _i x. D ) e. CC ) |
| 165 | 108 | zcnd | |- ( ph -> G e. CC ) |
| 166 | 110 | zcnd | |- ( ph -> H e. CC ) |
| 167 | mulcl | |- ( ( _i e. CC /\ H e. CC ) -> ( _i x. H ) e. CC ) |
|
| 168 | 134 166 167 | sylancr | |- ( ph -> ( _i x. H ) e. CC ) |
| 169 | 161 164 165 168 | addsub4d | |- ( ph -> ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) = ( ( C - G ) + ( ( _i x. D ) - ( _i x. H ) ) ) ) |
| 170 | 143 162 166 | subdid | |- ( ph -> ( _i x. ( D - H ) ) = ( ( _i x. D ) - ( _i x. H ) ) ) |
| 171 | 170 | oveq2d | |- ( ph -> ( ( C - G ) + ( _i x. ( D - H ) ) ) = ( ( C - G ) + ( ( _i x. D ) - ( _i x. H ) ) ) ) |
| 172 | 169 171 | eqtr4d | |- ( ph -> ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) = ( ( C - G ) + ( _i x. ( D - H ) ) ) ) |
| 173 | 172 | oveq1d | |- ( ph -> ( ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) / M ) = ( ( ( C - G ) + ( _i x. ( D - H ) ) ) / M ) ) |
| 174 | 161 165 | subcld | |- ( ph -> ( C - G ) e. CC ) |
| 175 | 162 166 | subcld | |- ( ph -> ( D - H ) e. CC ) |
| 176 | mulcl | |- ( ( _i e. CC /\ ( D - H ) e. CC ) -> ( _i x. ( D - H ) ) e. CC ) |
|
| 177 | 134 175 176 | sylancr | |- ( ph -> ( _i x. ( D - H ) ) e. CC ) |
| 178 | 174 177 33 39 | divdird | |- ( ph -> ( ( ( C - G ) + ( _i x. ( D - H ) ) ) / M ) = ( ( ( C - G ) / M ) + ( ( _i x. ( D - H ) ) / M ) ) ) |
| 179 | 143 175 33 39 | divassd | |- ( ph -> ( ( _i x. ( D - H ) ) / M ) = ( _i x. ( ( D - H ) / M ) ) ) |
| 180 | 179 | oveq2d | |- ( ph -> ( ( ( C - G ) / M ) + ( ( _i x. ( D - H ) ) / M ) ) = ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) ) |
| 181 | 173 178 180 | 3eqtrd | |- ( ph -> ( ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) / M ) = ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) ) |
| 182 | 107 | simprd | |- ( ph -> ( ( C - G ) / M ) e. ZZ ) |
| 183 | 109 | simprd | |- ( ph -> ( ( D - H ) / M ) e. ZZ ) |
| 184 | gzreim | |- ( ( ( ( C - G ) / M ) e. ZZ /\ ( ( D - H ) / M ) e. ZZ ) -> ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) e. Z[i] ) |
|
| 185 | 182 183 184 | syl2anc | |- ( ph -> ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) e. Z[i] ) |
| 186 | 181 185 | eqeltrd | |- ( ph -> ( ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) / M ) e. Z[i] ) |
| 187 | 86 | nnnn0d | |- ( ph -> P e. NN0 ) |
| 188 | 89 187 | eqeltrd | |- ( ph -> ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) e. NN0 ) |
| 189 | 1 57 70 95 112 131 132 29 160 186 188 | mul4sqlem | |- ( ph -> ( ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) x. ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) ) e. S ) |
| 190 | 130 189 | eqeltrrd | |- ( ph -> ( R x. P ) e. S ) |
| 191 | oveq1 | |- ( i = R -> ( i x. P ) = ( R x. P ) ) |
|
| 192 | 191 | eleq1d | |- ( i = R -> ( ( i x. P ) e. S <-> ( R x. P ) e. S ) ) |
| 193 | 192 6 | elrab2 | |- ( R e. T <-> ( R e. NN /\ ( R x. P ) e. S ) ) |
| 194 | 55 190 193 | sylanbrc | |- ( ph -> R e. T ) |
| 195 | infssuzle | |- ( ( T C_ ( ZZ>= ` 1 ) /\ R e. T ) -> inf ( T , RR , < ) <_ R ) |
|
| 196 | 23 194 195 | sylancr | |- ( ph -> inf ( T , RR , < ) <_ R ) |
| 197 | 7 196 | eqbrtrid | |- ( ph -> M <_ R ) |
| 198 | 55 | nnred | |- ( ph -> R e. RR ) |
| 199 | 198 30 | letri3d | |- ( ph -> ( R = M <-> ( R <_ M /\ M <_ R ) ) ) |
| 200 | 20 197 199 | mpbir2and | |- ( ph -> R = M ) |
| 201 | 200 | olcd | |- ( ph -> ( R = 0 \/ R = M ) ) |
| 202 | 201 52 | mpd | |- ( ph -> ( M ^ 2 ) || ( M x. P ) ) |
| 203 | 202 46 | pm2.65i | |- -. ph |