This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 4sq.2 | |- ( ph -> N e. NN ) |
||
| 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
||
| 4sq.4 | |- ( ph -> P e. Prime ) |
||
| 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
||
| 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
||
| 4sq.7 | |- M = inf ( T , RR , < ) |
||
| Assertion | 4sqlem18 | |- ( ph -> P e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 2 | 4sq.2 | |- ( ph -> N e. NN ) |
|
| 3 | 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
|
| 4 | 4sq.4 | |- ( ph -> P e. Prime ) |
|
| 5 | 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
|
| 6 | 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
|
| 7 | 4sq.7 | |- M = inf ( T , RR , < ) |
|
| 8 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 9 | 4 8 | syl | |- ( ph -> P e. NN ) |
| 10 | 9 | nncnd | |- ( ph -> P e. CC ) |
| 11 | 10 | mullidd | |- ( ph -> ( 1 x. P ) = P ) |
| 12 | 6 | ssrab3 | |- T C_ NN |
| 13 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 14 | 12 13 | sseqtri | |- T C_ ( ZZ>= ` 1 ) |
| 15 | 1 2 3 4 5 6 7 | 4sqlem13 | |- ( ph -> ( T =/= (/) /\ M < P ) ) |
| 16 | 15 | simpld | |- ( ph -> T =/= (/) ) |
| 17 | infssuzcl | |- ( ( T C_ ( ZZ>= ` 1 ) /\ T =/= (/) ) -> inf ( T , RR , < ) e. T ) |
|
| 18 | 14 16 17 | sylancr | |- ( ph -> inf ( T , RR , < ) e. T ) |
| 19 | 7 18 | eqeltrid | |- ( ph -> M e. T ) |
| 20 | oveq1 | |- ( i = M -> ( i x. P ) = ( M x. P ) ) |
|
| 21 | 20 | eleq1d | |- ( i = M -> ( ( i x. P ) e. S <-> ( M x. P ) e. S ) ) |
| 22 | 21 6 | elrab2 | |- ( M e. T <-> ( M e. NN /\ ( M x. P ) e. S ) ) |
| 23 | 19 22 | sylib | |- ( ph -> ( M e. NN /\ ( M x. P ) e. S ) ) |
| 24 | 23 | simprd | |- ( ph -> ( M x. P ) e. S ) |
| 25 | 1 | 4sqlem2 | |- ( ( M x. P ) e. S <-> E. a e. ZZ E. b e. ZZ E. c e. ZZ E. d e. ZZ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) |
| 26 | 24 25 | sylib | |- ( ph -> E. a e. ZZ E. b e. ZZ E. c e. ZZ E. d e. ZZ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ M e. ( ZZ>= ` 2 ) ) -> E. a e. ZZ E. b e. ZZ E. c e. ZZ E. d e. ZZ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) |
| 28 | simp1l | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> ph ) |
|
| 29 | 28 2 | syl | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> N e. NN ) |
| 30 | 28 3 | syl | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> P = ( ( 2 x. N ) + 1 ) ) |
| 31 | 28 4 | syl | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> P e. Prime ) |
| 32 | 28 5 | syl | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> ( 0 ... ( 2 x. N ) ) C_ S ) |
| 33 | simp1r | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> M e. ( ZZ>= ` 2 ) ) |
|
| 34 | simp2ll | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> a e. ZZ ) |
|
| 35 | simp2lr | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> b e. ZZ ) |
|
| 36 | simp2rl | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> c e. ZZ ) |
|
| 37 | simp2rr | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> d e. ZZ ) |
|
| 38 | eqid | |- ( ( ( a + ( M / 2 ) ) mod M ) - ( M / 2 ) ) = ( ( ( a + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 39 | eqid | |- ( ( ( b + ( M / 2 ) ) mod M ) - ( M / 2 ) ) = ( ( ( b + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 40 | eqid | |- ( ( ( c + ( M / 2 ) ) mod M ) - ( M / 2 ) ) = ( ( ( c + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 41 | eqid | |- ( ( ( d + ( M / 2 ) ) mod M ) - ( M / 2 ) ) = ( ( ( d + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 42 | eqid | |- ( ( ( ( ( ( ( a + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) + ( ( ( ( b + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) ) + ( ( ( ( ( c + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) + ( ( ( ( d + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) ) ) / M ) = ( ( ( ( ( ( ( a + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) + ( ( ( ( b + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) ) + ( ( ( ( ( c + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) + ( ( ( ( d + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) ) ) / M ) |
|
| 43 | simp3 | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) |
|
| 44 | 1 29 30 31 32 6 7 33 34 35 36 37 38 39 40 41 42 43 | 4sqlem17 | |- -. ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) |
| 45 | 44 | pm2.21i | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> -. M e. ( ZZ>= ` 2 ) ) |
| 46 | 45 | 3expia | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) ) -> ( ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) -> -. M e. ( ZZ>= ` 2 ) ) ) |
| 47 | 46 | anassrs | |- ( ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) -> ( ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) -> -. M e. ( ZZ>= ` 2 ) ) ) |
| 48 | 47 | rexlimdvva | |- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( E. c e. ZZ E. d e. ZZ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) -> -. M e. ( ZZ>= ` 2 ) ) ) |
| 49 | 48 | rexlimdvva | |- ( ( ph /\ M e. ( ZZ>= ` 2 ) ) -> ( E. a e. ZZ E. b e. ZZ E. c e. ZZ E. d e. ZZ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) -> -. M e. ( ZZ>= ` 2 ) ) ) |
| 50 | 27 49 | mpd | |- ( ( ph /\ M e. ( ZZ>= ` 2 ) ) -> -. M e. ( ZZ>= ` 2 ) ) |
| 51 | 50 | pm2.01da | |- ( ph -> -. M e. ( ZZ>= ` 2 ) ) |
| 52 | 23 | simpld | |- ( ph -> M e. NN ) |
| 53 | elnn1uz2 | |- ( M e. NN <-> ( M = 1 \/ M e. ( ZZ>= ` 2 ) ) ) |
|
| 54 | 52 53 | sylib | |- ( ph -> ( M = 1 \/ M e. ( ZZ>= ` 2 ) ) ) |
| 55 | 54 | ord | |- ( ph -> ( -. M = 1 -> M e. ( ZZ>= ` 2 ) ) ) |
| 56 | 51 55 | mt3d | |- ( ph -> M = 1 ) |
| 57 | 56 19 | eqeltrrd | |- ( ph -> 1 e. T ) |
| 58 | oveq1 | |- ( i = 1 -> ( i x. P ) = ( 1 x. P ) ) |
|
| 59 | 58 | eleq1d | |- ( i = 1 -> ( ( i x. P ) e. S <-> ( 1 x. P ) e. S ) ) |
| 60 | 59 6 | elrab2 | |- ( 1 e. T <-> ( 1 e. NN /\ ( 1 x. P ) e. S ) ) |
| 61 | 60 | simprbi | |- ( 1 e. T -> ( 1 x. P ) e. S ) |
| 62 | 57 61 | syl | |- ( ph -> ( 1 x. P ) e. S ) |
| 63 | 11 62 | eqeltrrd | |- ( ph -> P e. S ) |