This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mul4sq : algebraic manipulations. The extra assumptions involving M are for a part of 4sqlem17 which needs to know not just that the product is a sum of squares, but also that it preserves divisibility by M . (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| mul4sq.1 | |- ( ph -> A e. Z[i] ) |
||
| mul4sq.2 | |- ( ph -> B e. Z[i] ) |
||
| mul4sq.3 | |- ( ph -> C e. Z[i] ) |
||
| mul4sq.4 | |- ( ph -> D e. Z[i] ) |
||
| mul4sq.5 | |- X = ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) |
||
| mul4sq.6 | |- Y = ( ( ( abs ` C ) ^ 2 ) + ( ( abs ` D ) ^ 2 ) ) |
||
| mul4sq.7 | |- ( ph -> M e. NN ) |
||
| mul4sq.8 | |- ( ph -> ( ( A - C ) / M ) e. Z[i] ) |
||
| mul4sq.9 | |- ( ph -> ( ( B - D ) / M ) e. Z[i] ) |
||
| mul4sq.10 | |- ( ph -> ( X / M ) e. NN0 ) |
||
| Assertion | mul4sqlem | |- ( ph -> ( ( X / M ) x. ( Y / M ) ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 2 | mul4sq.1 | |- ( ph -> A e. Z[i] ) |
|
| 3 | mul4sq.2 | |- ( ph -> B e. Z[i] ) |
|
| 4 | mul4sq.3 | |- ( ph -> C e. Z[i] ) |
|
| 5 | mul4sq.4 | |- ( ph -> D e. Z[i] ) |
|
| 6 | mul4sq.5 | |- X = ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) |
|
| 7 | mul4sq.6 | |- Y = ( ( ( abs ` C ) ^ 2 ) + ( ( abs ` D ) ^ 2 ) ) |
|
| 8 | mul4sq.7 | |- ( ph -> M e. NN ) |
|
| 9 | mul4sq.8 | |- ( ph -> ( ( A - C ) / M ) e. Z[i] ) |
|
| 10 | mul4sq.9 | |- ( ph -> ( ( B - D ) / M ) e. Z[i] ) |
|
| 11 | mul4sq.10 | |- ( ph -> ( X / M ) e. NN0 ) |
|
| 12 | gzcn | |- ( A e. Z[i] -> A e. CC ) |
|
| 13 | 2 12 | syl | |- ( ph -> A e. CC ) |
| 14 | gzcn | |- ( C e. Z[i] -> C e. CC ) |
|
| 15 | 4 14 | syl | |- ( ph -> C e. CC ) |
| 16 | 13 15 | mulcld | |- ( ph -> ( A x. C ) e. CC ) |
| 17 | 16 | absvalsqd | |- ( ph -> ( ( abs ` ( A x. C ) ) ^ 2 ) = ( ( A x. C ) x. ( * ` ( A x. C ) ) ) ) |
| 18 | 16 | cjcld | |- ( ph -> ( * ` ( A x. C ) ) e. CC ) |
| 19 | 16 18 | mulcld | |- ( ph -> ( ( A x. C ) x. ( * ` ( A x. C ) ) ) e. CC ) |
| 20 | 17 19 | eqeltrd | |- ( ph -> ( ( abs ` ( A x. C ) ) ^ 2 ) e. CC ) |
| 21 | gzcn | |- ( B e. Z[i] -> B e. CC ) |
|
| 22 | 3 21 | syl | |- ( ph -> B e. CC ) |
| 23 | gzcn | |- ( D e. Z[i] -> D e. CC ) |
|
| 24 | 5 23 | syl | |- ( ph -> D e. CC ) |
| 25 | 22 24 | mulcld | |- ( ph -> ( B x. D ) e. CC ) |
| 26 | 25 | absvalsqd | |- ( ph -> ( ( abs ` ( B x. D ) ) ^ 2 ) = ( ( B x. D ) x. ( * ` ( B x. D ) ) ) ) |
| 27 | 25 | cjcld | |- ( ph -> ( * ` ( B x. D ) ) e. CC ) |
| 28 | 25 27 | mulcld | |- ( ph -> ( ( B x. D ) x. ( * ` ( B x. D ) ) ) e. CC ) |
| 29 | 26 28 | eqeltrd | |- ( ph -> ( ( abs ` ( B x. D ) ) ^ 2 ) e. CC ) |
| 30 | 20 29 | addcld | |- ( ph -> ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) e. CC ) |
| 31 | 13 | cjcld | |- ( ph -> ( * ` A ) e. CC ) |
| 32 | 31 15 | mulcld | |- ( ph -> ( ( * ` A ) x. C ) e. CC ) |
| 33 | 22 | cjcld | |- ( ph -> ( * ` B ) e. CC ) |
| 34 | 33 24 | mulcld | |- ( ph -> ( ( * ` B ) x. D ) e. CC ) |
| 35 | 32 34 | mulcld | |- ( ph -> ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) e. CC ) |
| 36 | 15 | cjcld | |- ( ph -> ( * ` C ) e. CC ) |
| 37 | 22 36 | mulcld | |- ( ph -> ( B x. ( * ` C ) ) e. CC ) |
| 38 | 24 | cjcld | |- ( ph -> ( * ` D ) e. CC ) |
| 39 | 13 38 | mulcld | |- ( ph -> ( A x. ( * ` D ) ) e. CC ) |
| 40 | 37 39 | mulcld | |- ( ph -> ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) e. CC ) |
| 41 | 35 40 | addcld | |- ( ph -> ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) e. CC ) |
| 42 | 13 24 | mulcld | |- ( ph -> ( A x. D ) e. CC ) |
| 43 | 42 | absvalsqd | |- ( ph -> ( ( abs ` ( A x. D ) ) ^ 2 ) = ( ( A x. D ) x. ( * ` ( A x. D ) ) ) ) |
| 44 | 42 | cjcld | |- ( ph -> ( * ` ( A x. D ) ) e. CC ) |
| 45 | 42 44 | mulcld | |- ( ph -> ( ( A x. D ) x. ( * ` ( A x. D ) ) ) e. CC ) |
| 46 | 43 45 | eqeltrd | |- ( ph -> ( ( abs ` ( A x. D ) ) ^ 2 ) e. CC ) |
| 47 | 22 15 | mulcld | |- ( ph -> ( B x. C ) e. CC ) |
| 48 | 47 | absvalsqd | |- ( ph -> ( ( abs ` ( B x. C ) ) ^ 2 ) = ( ( B x. C ) x. ( * ` ( B x. C ) ) ) ) |
| 49 | 47 | cjcld | |- ( ph -> ( * ` ( B x. C ) ) e. CC ) |
| 50 | 47 49 | mulcld | |- ( ph -> ( ( B x. C ) x. ( * ` ( B x. C ) ) ) e. CC ) |
| 51 | 48 50 | eqeltrd | |- ( ph -> ( ( abs ` ( B x. C ) ) ^ 2 ) e. CC ) |
| 52 | 46 51 | addcld | |- ( ph -> ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) e. CC ) |
| 53 | 30 41 52 | ppncand | |- ( ph -> ( ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) + ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) ) |
| 54 | 22 38 | mulcld | |- ( ph -> ( B x. ( * ` D ) ) e. CC ) |
| 55 | 32 54 | addcld | |- ( ph -> ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) e. CC ) |
| 56 | 55 | absvalsqd | |- ( ph -> ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) = ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) x. ( * ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ) ) |
| 57 | 32 54 | cjaddd | |- ( ph -> ( * ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) = ( ( * ` ( ( * ` A ) x. C ) ) + ( * ` ( B x. ( * ` D ) ) ) ) ) |
| 58 | 31 15 | cjmuld | |- ( ph -> ( * ` ( ( * ` A ) x. C ) ) = ( ( * ` ( * ` A ) ) x. ( * ` C ) ) ) |
| 59 | 13 | cjcjd | |- ( ph -> ( * ` ( * ` A ) ) = A ) |
| 60 | 59 | oveq1d | |- ( ph -> ( ( * ` ( * ` A ) ) x. ( * ` C ) ) = ( A x. ( * ` C ) ) ) |
| 61 | 58 60 | eqtrd | |- ( ph -> ( * ` ( ( * ` A ) x. C ) ) = ( A x. ( * ` C ) ) ) |
| 62 | 22 38 | cjmuld | |- ( ph -> ( * ` ( B x. ( * ` D ) ) ) = ( ( * ` B ) x. ( * ` ( * ` D ) ) ) ) |
| 63 | 24 | cjcjd | |- ( ph -> ( * ` ( * ` D ) ) = D ) |
| 64 | 63 | oveq2d | |- ( ph -> ( ( * ` B ) x. ( * ` ( * ` D ) ) ) = ( ( * ` B ) x. D ) ) |
| 65 | 62 64 | eqtrd | |- ( ph -> ( * ` ( B x. ( * ` D ) ) ) = ( ( * ` B ) x. D ) ) |
| 66 | 61 65 | oveq12d | |- ( ph -> ( ( * ` ( ( * ` A ) x. C ) ) + ( * ` ( B x. ( * ` D ) ) ) ) = ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) |
| 67 | 57 66 | eqtrd | |- ( ph -> ( * ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) = ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) |
| 68 | 67 | oveq2d | |- ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) x. ( * ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ) = ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) ) |
| 69 | 13 36 | mulcld | |- ( ph -> ( A x. ( * ` C ) ) e. CC ) |
| 70 | 32 69 34 | adddid | |- ( ph -> ( ( ( * ` A ) x. C ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( ( * ` A ) x. C ) x. ( A x. ( * ` C ) ) ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) ) |
| 71 | 15 31 13 36 | mul4d | |- ( ph -> ( ( C x. ( * ` A ) ) x. ( A x. ( * ` C ) ) ) = ( ( C x. A ) x. ( ( * ` A ) x. ( * ` C ) ) ) ) |
| 72 | 31 15 | mulcomd | |- ( ph -> ( ( * ` A ) x. C ) = ( C x. ( * ` A ) ) ) |
| 73 | 72 | oveq1d | |- ( ph -> ( ( ( * ` A ) x. C ) x. ( A x. ( * ` C ) ) ) = ( ( C x. ( * ` A ) ) x. ( A x. ( * ` C ) ) ) ) |
| 74 | 13 15 | mulcomd | |- ( ph -> ( A x. C ) = ( C x. A ) ) |
| 75 | 13 15 | cjmuld | |- ( ph -> ( * ` ( A x. C ) ) = ( ( * ` A ) x. ( * ` C ) ) ) |
| 76 | 74 75 | oveq12d | |- ( ph -> ( ( A x. C ) x. ( * ` ( A x. C ) ) ) = ( ( C x. A ) x. ( ( * ` A ) x. ( * ` C ) ) ) ) |
| 77 | 71 73 76 | 3eqtr4d | |- ( ph -> ( ( ( * ` A ) x. C ) x. ( A x. ( * ` C ) ) ) = ( ( A x. C ) x. ( * ` ( A x. C ) ) ) ) |
| 78 | 77 17 | eqtr4d | |- ( ph -> ( ( ( * ` A ) x. C ) x. ( A x. ( * ` C ) ) ) = ( ( abs ` ( A x. C ) ) ^ 2 ) ) |
| 79 | 78 | oveq1d | |- ( ph -> ( ( ( ( * ` A ) x. C ) x. ( A x. ( * ` C ) ) ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) = ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) ) |
| 80 | 70 79 | eqtrd | |- ( ph -> ( ( ( * ` A ) x. C ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) ) |
| 81 | 54 69 34 | adddid | |- ( ph -> ( ( B x. ( * ` D ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( B x. ( * ` D ) ) x. ( A x. ( * ` C ) ) ) + ( ( B x. ( * ` D ) ) x. ( ( * ` B ) x. D ) ) ) ) |
| 82 | 13 36 | mulcomd | |- ( ph -> ( A x. ( * ` C ) ) = ( ( * ` C ) x. A ) ) |
| 83 | 82 | oveq2d | |- ( ph -> ( ( B x. ( * ` D ) ) x. ( A x. ( * ` C ) ) ) = ( ( B x. ( * ` D ) ) x. ( ( * ` C ) x. A ) ) ) |
| 84 | 22 38 36 13 | mul4d | |- ( ph -> ( ( B x. ( * ` D ) ) x. ( ( * ` C ) x. A ) ) = ( ( B x. ( * ` C ) ) x. ( ( * ` D ) x. A ) ) ) |
| 85 | 38 13 | mulcomd | |- ( ph -> ( ( * ` D ) x. A ) = ( A x. ( * ` D ) ) ) |
| 86 | 85 | oveq2d | |- ( ph -> ( ( B x. ( * ` C ) ) x. ( ( * ` D ) x. A ) ) = ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) |
| 87 | 83 84 86 | 3eqtrd | |- ( ph -> ( ( B x. ( * ` D ) ) x. ( A x. ( * ` C ) ) ) = ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) |
| 88 | 22 38 24 33 | mul4d | |- ( ph -> ( ( B x. ( * ` D ) ) x. ( D x. ( * ` B ) ) ) = ( ( B x. D ) x. ( ( * ` D ) x. ( * ` B ) ) ) ) |
| 89 | 33 24 | mulcomd | |- ( ph -> ( ( * ` B ) x. D ) = ( D x. ( * ` B ) ) ) |
| 90 | 89 | oveq2d | |- ( ph -> ( ( B x. ( * ` D ) ) x. ( ( * ` B ) x. D ) ) = ( ( B x. ( * ` D ) ) x. ( D x. ( * ` B ) ) ) ) |
| 91 | 22 24 | cjmuld | |- ( ph -> ( * ` ( B x. D ) ) = ( ( * ` B ) x. ( * ` D ) ) ) |
| 92 | 33 38 | mulcomd | |- ( ph -> ( ( * ` B ) x. ( * ` D ) ) = ( ( * ` D ) x. ( * ` B ) ) ) |
| 93 | 91 92 | eqtrd | |- ( ph -> ( * ` ( B x. D ) ) = ( ( * ` D ) x. ( * ` B ) ) ) |
| 94 | 93 | oveq2d | |- ( ph -> ( ( B x. D ) x. ( * ` ( B x. D ) ) ) = ( ( B x. D ) x. ( ( * ` D ) x. ( * ` B ) ) ) ) |
| 95 | 88 90 94 | 3eqtr4d | |- ( ph -> ( ( B x. ( * ` D ) ) x. ( ( * ` B ) x. D ) ) = ( ( B x. D ) x. ( * ` ( B x. D ) ) ) ) |
| 96 | 95 26 | eqtr4d | |- ( ph -> ( ( B x. ( * ` D ) ) x. ( ( * ` B ) x. D ) ) = ( ( abs ` ( B x. D ) ) ^ 2 ) ) |
| 97 | 87 96 | oveq12d | |- ( ph -> ( ( ( B x. ( * ` D ) ) x. ( A x. ( * ` C ) ) ) + ( ( B x. ( * ` D ) ) x. ( ( * ` B ) x. D ) ) ) = ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) |
| 98 | 81 97 | eqtrd | |- ( ph -> ( ( B x. ( * ` D ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) |
| 99 | 80 98 | oveq12d | |- ( ph -> ( ( ( ( * ` A ) x. C ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) + ( ( B x. ( * ` D ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) + ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) ) |
| 100 | 69 34 | addcld | |- ( ph -> ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) e. CC ) |
| 101 | 32 54 100 | adddird | |- ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( ( * ` A ) x. C ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) + ( ( B x. ( * ` D ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) ) ) |
| 102 | 20 29 35 40 | add42d | |- ( ph -> ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) + ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) ) |
| 103 | 99 101 102 | 3eqtr4d | |- ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) x. ( ( A x. ( * ` C ) ) + ( ( * ` B ) x. D ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) ) |
| 104 | 56 68 103 | 3eqtrd | |- ( ph -> ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) ) |
| 105 | 31 24 | mulcld | |- ( ph -> ( ( * ` A ) x. D ) e. CC ) |
| 106 | 105 37 | subcld | |- ( ph -> ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) e. CC ) |
| 107 | 106 | absvalsqd | |- ( ph -> ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) = ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) x. ( * ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ) ) |
| 108 | cjsub | |- ( ( ( ( * ` A ) x. D ) e. CC /\ ( B x. ( * ` C ) ) e. CC ) -> ( * ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) = ( ( * ` ( ( * ` A ) x. D ) ) - ( * ` ( B x. ( * ` C ) ) ) ) ) |
|
| 109 | 105 37 108 | syl2anc | |- ( ph -> ( * ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) = ( ( * ` ( ( * ` A ) x. D ) ) - ( * ` ( B x. ( * ` C ) ) ) ) ) |
| 110 | 31 24 | cjmuld | |- ( ph -> ( * ` ( ( * ` A ) x. D ) ) = ( ( * ` ( * ` A ) ) x. ( * ` D ) ) ) |
| 111 | 59 | oveq1d | |- ( ph -> ( ( * ` ( * ` A ) ) x. ( * ` D ) ) = ( A x. ( * ` D ) ) ) |
| 112 | 110 111 | eqtrd | |- ( ph -> ( * ` ( ( * ` A ) x. D ) ) = ( A x. ( * ` D ) ) ) |
| 113 | 22 36 | cjmuld | |- ( ph -> ( * ` ( B x. ( * ` C ) ) ) = ( ( * ` B ) x. ( * ` ( * ` C ) ) ) ) |
| 114 | 15 | cjcjd | |- ( ph -> ( * ` ( * ` C ) ) = C ) |
| 115 | 114 | oveq2d | |- ( ph -> ( ( * ` B ) x. ( * ` ( * ` C ) ) ) = ( ( * ` B ) x. C ) ) |
| 116 | 113 115 | eqtrd | |- ( ph -> ( * ` ( B x. ( * ` C ) ) ) = ( ( * ` B ) x. C ) ) |
| 117 | 112 116 | oveq12d | |- ( ph -> ( ( * ` ( ( * ` A ) x. D ) ) - ( * ` ( B x. ( * ` C ) ) ) ) = ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) |
| 118 | 109 117 | eqtrd | |- ( ph -> ( * ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) = ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) |
| 119 | 118 | oveq2d | |- ( ph -> ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) x. ( * ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ) = ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) ) |
| 120 | 33 15 | mulcld | |- ( ph -> ( ( * ` B ) x. C ) e. CC ) |
| 121 | 39 120 | subcld | |- ( ph -> ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) e. CC ) |
| 122 | 105 37 121 | subdird | |- ( ph -> ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( ( * ` A ) x. D ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) - ( ( B x. ( * ` C ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) ) ) |
| 123 | 105 39 120 | subdid | |- ( ph -> ( ( ( * ` A ) x. D ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( ( * ` A ) x. D ) x. ( A x. ( * ` D ) ) ) - ( ( ( * ` A ) x. D ) x. ( ( * ` B ) x. C ) ) ) ) |
| 124 | 24 31 13 38 | mul4d | |- ( ph -> ( ( D x. ( * ` A ) ) x. ( A x. ( * ` D ) ) ) = ( ( D x. A ) x. ( ( * ` A ) x. ( * ` D ) ) ) ) |
| 125 | 31 24 | mulcomd | |- ( ph -> ( ( * ` A ) x. D ) = ( D x. ( * ` A ) ) ) |
| 126 | 125 | oveq1d | |- ( ph -> ( ( ( * ` A ) x. D ) x. ( A x. ( * ` D ) ) ) = ( ( D x. ( * ` A ) ) x. ( A x. ( * ` D ) ) ) ) |
| 127 | 13 24 | mulcomd | |- ( ph -> ( A x. D ) = ( D x. A ) ) |
| 128 | 13 24 | cjmuld | |- ( ph -> ( * ` ( A x. D ) ) = ( ( * ` A ) x. ( * ` D ) ) ) |
| 129 | 127 128 | oveq12d | |- ( ph -> ( ( A x. D ) x. ( * ` ( A x. D ) ) ) = ( ( D x. A ) x. ( ( * ` A ) x. ( * ` D ) ) ) ) |
| 130 | 124 126 129 | 3eqtr4d | |- ( ph -> ( ( ( * ` A ) x. D ) x. ( A x. ( * ` D ) ) ) = ( ( A x. D ) x. ( * ` ( A x. D ) ) ) ) |
| 131 | 130 43 | eqtr4d | |- ( ph -> ( ( ( * ` A ) x. D ) x. ( A x. ( * ` D ) ) ) = ( ( abs ` ( A x. D ) ) ^ 2 ) ) |
| 132 | 33 15 | mulcomd | |- ( ph -> ( ( * ` B ) x. C ) = ( C x. ( * ` B ) ) ) |
| 133 | 132 | oveq2d | |- ( ph -> ( ( ( * ` A ) x. D ) x. ( ( * ` B ) x. C ) ) = ( ( ( * ` A ) x. D ) x. ( C x. ( * ` B ) ) ) ) |
| 134 | 31 24 15 33 | mul4d | |- ( ph -> ( ( ( * ` A ) x. D ) x. ( C x. ( * ` B ) ) ) = ( ( ( * ` A ) x. C ) x. ( D x. ( * ` B ) ) ) ) |
| 135 | 24 33 | mulcomd | |- ( ph -> ( D x. ( * ` B ) ) = ( ( * ` B ) x. D ) ) |
| 136 | 135 | oveq2d | |- ( ph -> ( ( ( * ` A ) x. C ) x. ( D x. ( * ` B ) ) ) = ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) |
| 137 | 133 134 136 | 3eqtrd | |- ( ph -> ( ( ( * ` A ) x. D ) x. ( ( * ` B ) x. C ) ) = ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) |
| 138 | 131 137 | oveq12d | |- ( ph -> ( ( ( ( * ` A ) x. D ) x. ( A x. ( * ` D ) ) ) - ( ( ( * ` A ) x. D ) x. ( ( * ` B ) x. C ) ) ) = ( ( ( abs ` ( A x. D ) ) ^ 2 ) - ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) ) |
| 139 | 123 138 | eqtrd | |- ( ph -> ( ( ( * ` A ) x. D ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( abs ` ( A x. D ) ) ^ 2 ) - ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) ) |
| 140 | 37 39 120 | subdid | |- ( ph -> ( ( B x. ( * ` C ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( B x. ( * ` C ) ) x. ( ( * ` B ) x. C ) ) ) ) |
| 141 | 132 | oveq2d | |- ( ph -> ( ( B x. ( * ` C ) ) x. ( ( * ` B ) x. C ) ) = ( ( B x. ( * ` C ) ) x. ( C x. ( * ` B ) ) ) ) |
| 142 | 22 36 15 33 | mul4d | |- ( ph -> ( ( B x. ( * ` C ) ) x. ( C x. ( * ` B ) ) ) = ( ( B x. C ) x. ( ( * ` C ) x. ( * ` B ) ) ) ) |
| 143 | 36 33 | mulcomd | |- ( ph -> ( ( * ` C ) x. ( * ` B ) ) = ( ( * ` B ) x. ( * ` C ) ) ) |
| 144 | 22 15 | cjmuld | |- ( ph -> ( * ` ( B x. C ) ) = ( ( * ` B ) x. ( * ` C ) ) ) |
| 145 | 143 144 | eqtr4d | |- ( ph -> ( ( * ` C ) x. ( * ` B ) ) = ( * ` ( B x. C ) ) ) |
| 146 | 145 | oveq2d | |- ( ph -> ( ( B x. C ) x. ( ( * ` C ) x. ( * ` B ) ) ) = ( ( B x. C ) x. ( * ` ( B x. C ) ) ) ) |
| 147 | 141 142 146 | 3eqtrd | |- ( ph -> ( ( B x. ( * ` C ) ) x. ( ( * ` B ) x. C ) ) = ( ( B x. C ) x. ( * ` ( B x. C ) ) ) ) |
| 148 | 147 48 | eqtr4d | |- ( ph -> ( ( B x. ( * ` C ) ) x. ( ( * ` B ) x. C ) ) = ( ( abs ` ( B x. C ) ) ^ 2 ) ) |
| 149 | 148 | oveq2d | |- ( ph -> ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( B x. ( * ` C ) ) x. ( ( * ` B ) x. C ) ) ) = ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) |
| 150 | 140 149 | eqtrd | |- ( ph -> ( ( B x. ( * ` C ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) |
| 151 | 139 150 | oveq12d | |- ( ph -> ( ( ( ( * ` A ) x. D ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) - ( ( B x. ( * ` C ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) ) = ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) - ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) - ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) ) |
| 152 | 46 35 40 51 | subadd4d | |- ( ph -> ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) - ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) ) - ( ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) - ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) = ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) ) |
| 153 | 122 151 152 | 3eqtrd | |- ( ph -> ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) x. ( ( A x. ( * ` D ) ) - ( ( * ` B ) x. C ) ) ) = ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) ) |
| 154 | 107 119 153 | 3eqtrd | |- ( ph -> ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) = ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) ) |
| 155 | 104 154 | oveq12d | |- ( ph -> ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) + ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) ) = ( ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) + ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) ) ) |
| 156 | 13 31 | mulcld | |- ( ph -> ( A x. ( * ` A ) ) e. CC ) |
| 157 | 22 33 | mulcld | |- ( ph -> ( B x. ( * ` B ) ) e. CC ) |
| 158 | 15 36 | mulcld | |- ( ph -> ( C x. ( * ` C ) ) e. CC ) |
| 159 | 24 38 | mulcld | |- ( ph -> ( D x. ( * ` D ) ) e. CC ) |
| 160 | 158 159 | addcld | |- ( ph -> ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) e. CC ) |
| 161 | 156 157 160 | adddird | |- ( ph -> ( ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) = ( ( ( A x. ( * ` A ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) + ( ( B x. ( * ` B ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) ) ) |
| 162 | 75 | oveq2d | |- ( ph -> ( ( A x. C ) x. ( * ` ( A x. C ) ) ) = ( ( A x. C ) x. ( ( * ` A ) x. ( * ` C ) ) ) ) |
| 163 | 13 15 31 36 | mul4d | |- ( ph -> ( ( A x. C ) x. ( ( * ` A ) x. ( * ` C ) ) ) = ( ( A x. ( * ` A ) ) x. ( C x. ( * ` C ) ) ) ) |
| 164 | 17 162 163 | 3eqtrd | |- ( ph -> ( ( abs ` ( A x. C ) ) ^ 2 ) = ( ( A x. ( * ` A ) ) x. ( C x. ( * ` C ) ) ) ) |
| 165 | 128 | oveq2d | |- ( ph -> ( ( A x. D ) x. ( * ` ( A x. D ) ) ) = ( ( A x. D ) x. ( ( * ` A ) x. ( * ` D ) ) ) ) |
| 166 | 13 24 31 38 | mul4d | |- ( ph -> ( ( A x. D ) x. ( ( * ` A ) x. ( * ` D ) ) ) = ( ( A x. ( * ` A ) ) x. ( D x. ( * ` D ) ) ) ) |
| 167 | 43 165 166 | 3eqtrd | |- ( ph -> ( ( abs ` ( A x. D ) ) ^ 2 ) = ( ( A x. ( * ` A ) ) x. ( D x. ( * ` D ) ) ) ) |
| 168 | 164 167 | oveq12d | |- ( ph -> ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( A x. D ) ) ^ 2 ) ) = ( ( ( A x. ( * ` A ) ) x. ( C x. ( * ` C ) ) ) + ( ( A x. ( * ` A ) ) x. ( D x. ( * ` D ) ) ) ) ) |
| 169 | 156 158 159 | adddid | |- ( ph -> ( ( A x. ( * ` A ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) = ( ( ( A x. ( * ` A ) ) x. ( C x. ( * ` C ) ) ) + ( ( A x. ( * ` A ) ) x. ( D x. ( * ` D ) ) ) ) ) |
| 170 | 168 169 | eqtr4d | |- ( ph -> ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( A x. D ) ) ^ 2 ) ) = ( ( A x. ( * ` A ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) ) |
| 171 | 144 | oveq2d | |- ( ph -> ( ( B x. C ) x. ( * ` ( B x. C ) ) ) = ( ( B x. C ) x. ( ( * ` B ) x. ( * ` C ) ) ) ) |
| 172 | 22 15 33 36 | mul4d | |- ( ph -> ( ( B x. C ) x. ( ( * ` B ) x. ( * ` C ) ) ) = ( ( B x. ( * ` B ) ) x. ( C x. ( * ` C ) ) ) ) |
| 173 | 48 171 172 | 3eqtrd | |- ( ph -> ( ( abs ` ( B x. C ) ) ^ 2 ) = ( ( B x. ( * ` B ) ) x. ( C x. ( * ` C ) ) ) ) |
| 174 | 91 | oveq2d | |- ( ph -> ( ( B x. D ) x. ( * ` ( B x. D ) ) ) = ( ( B x. D ) x. ( ( * ` B ) x. ( * ` D ) ) ) ) |
| 175 | 22 24 33 38 | mul4d | |- ( ph -> ( ( B x. D ) x. ( ( * ` B ) x. ( * ` D ) ) ) = ( ( B x. ( * ` B ) ) x. ( D x. ( * ` D ) ) ) ) |
| 176 | 26 174 175 | 3eqtrd | |- ( ph -> ( ( abs ` ( B x. D ) ) ^ 2 ) = ( ( B x. ( * ` B ) ) x. ( D x. ( * ` D ) ) ) ) |
| 177 | 173 176 | oveq12d | |- ( ph -> ( ( ( abs ` ( B x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) = ( ( ( B x. ( * ` B ) ) x. ( C x. ( * ` C ) ) ) + ( ( B x. ( * ` B ) ) x. ( D x. ( * ` D ) ) ) ) ) |
| 178 | 157 158 159 | adddid | |- ( ph -> ( ( B x. ( * ` B ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) = ( ( ( B x. ( * ` B ) ) x. ( C x. ( * ` C ) ) ) + ( ( B x. ( * ` B ) ) x. ( D x. ( * ` D ) ) ) ) ) |
| 179 | 177 178 | eqtr4d | |- ( ph -> ( ( ( abs ` ( B x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) = ( ( B x. ( * ` B ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) ) |
| 180 | 170 179 | oveq12d | |- ( ph -> ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( A x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( B x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) = ( ( ( A x. ( * ` A ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) + ( ( B x. ( * ` B ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) ) ) |
| 181 | 161 180 | eqtr4d | |- ( ph -> ( ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( A x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( B x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) ) |
| 182 | 13 | absvalsqd | |- ( ph -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
| 183 | 22 | absvalsqd | |- ( ph -> ( ( abs ` B ) ^ 2 ) = ( B x. ( * ` B ) ) ) |
| 184 | 182 183 | oveq12d | |- ( ph -> ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) = ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) ) |
| 185 | 6 184 | eqtrid | |- ( ph -> X = ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) ) |
| 186 | 15 | absvalsqd | |- ( ph -> ( ( abs ` C ) ^ 2 ) = ( C x. ( * ` C ) ) ) |
| 187 | 24 | absvalsqd | |- ( ph -> ( ( abs ` D ) ^ 2 ) = ( D x. ( * ` D ) ) ) |
| 188 | 186 187 | oveq12d | |- ( ph -> ( ( ( abs ` C ) ^ 2 ) + ( ( abs ` D ) ^ 2 ) ) = ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) |
| 189 | 7 188 | eqtrid | |- ( ph -> Y = ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) |
| 190 | 185 189 | oveq12d | |- ( ph -> ( X x. Y ) = ( ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) x. ( ( C x. ( * ` C ) ) + ( D x. ( * ` D ) ) ) ) ) |
| 191 | 20 29 46 51 | add42d | |- ( ph -> ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( A x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( B x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) ) ) |
| 192 | 181 190 191 | 3eqtr4d | |- ( ph -> ( X x. Y ) = ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) ) ) |
| 193 | 53 155 192 | 3eqtr4d | |- ( ph -> ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) + ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) ) = ( X x. Y ) ) |
| 194 | 193 | oveq1d | |- ( ph -> ( ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) + ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) ) / ( M ^ 2 ) ) = ( ( X x. Y ) / ( M ^ 2 ) ) ) |
| 195 | 8 | nncnd | |- ( ph -> M e. CC ) |
| 196 | 8 | nnne0d | |- ( ph -> M =/= 0 ) |
| 197 | 55 195 196 | absdivd | |- ( ph -> ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) = ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / ( abs ` M ) ) ) |
| 198 | 8 | nnred | |- ( ph -> M e. RR ) |
| 199 | 8 | nnnn0d | |- ( ph -> M e. NN0 ) |
| 200 | 199 | nn0ge0d | |- ( ph -> 0 <_ M ) |
| 201 | 198 200 | absidd | |- ( ph -> ( abs ` M ) = M ) |
| 202 | 201 | oveq2d | |- ( ph -> ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / ( abs ` M ) ) = ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / M ) ) |
| 203 | 197 202 | eqtrd | |- ( ph -> ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) = ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / M ) ) |
| 204 | 203 | oveq1d | |- ( ph -> ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / M ) ^ 2 ) ) |
| 205 | 55 | abscld | |- ( ph -> ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) e. RR ) |
| 206 | 205 | recnd | |- ( ph -> ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) e. CC ) |
| 207 | 206 195 196 | sqdivd | |- ( ph -> ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) / M ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) ) |
| 208 | 204 207 | eqtrd | |- ( ph -> ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) ) |
| 209 | 106 195 196 | absdivd | |- ( ph -> ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) = ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / ( abs ` M ) ) ) |
| 210 | 201 | oveq2d | |- ( ph -> ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / ( abs ` M ) ) = ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / M ) ) |
| 211 | 209 210 | eqtrd | |- ( ph -> ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) = ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / M ) ) |
| 212 | 211 | oveq1d | |- ( ph -> ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / M ) ^ 2 ) ) |
| 213 | 106 | abscld | |- ( ph -> ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) e. RR ) |
| 214 | 213 | recnd | |- ( ph -> ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) e. CC ) |
| 215 | 214 195 196 | sqdivd | |- ( ph -> ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) / M ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) ) |
| 216 | 212 215 | eqtrd | |- ( ph -> ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) = ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) ) |
| 217 | 208 216 | oveq12d | |- ( ph -> ( ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) + ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) ) = ( ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) + ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) ) ) |
| 218 | 30 41 | addcld | |- ( ph -> ( ( ( ( abs ` ( A x. C ) ) ^ 2 ) + ( ( abs ` ( B x. D ) ) ^ 2 ) ) + ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) e. CC ) |
| 219 | 104 218 | eqeltrd | |- ( ph -> ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) e. CC ) |
| 220 | 52 41 | subcld | |- ( ph -> ( ( ( ( abs ` ( A x. D ) ) ^ 2 ) + ( ( abs ` ( B x. C ) ) ^ 2 ) ) - ( ( ( ( * ` A ) x. C ) x. ( ( * ` B ) x. D ) ) + ( ( B x. ( * ` C ) ) x. ( A x. ( * ` D ) ) ) ) ) e. CC ) |
| 221 | 154 220 | eqeltrd | |- ( ph -> ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) e. CC ) |
| 222 | 8 | nnsqcld | |- ( ph -> ( M ^ 2 ) e. NN ) |
| 223 | 222 | nncnd | |- ( ph -> ( M ^ 2 ) e. CC ) |
| 224 | 222 | nnne0d | |- ( ph -> ( M ^ 2 ) =/= 0 ) |
| 225 | 219 221 223 224 | divdird | |- ( ph -> ( ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) + ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) ) / ( M ^ 2 ) ) = ( ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) + ( ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) / ( M ^ 2 ) ) ) ) |
| 226 | 217 225 | eqtr4d | |- ( ph -> ( ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) + ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) ) = ( ( ( ( abs ` ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ^ 2 ) + ( ( abs ` ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) ^ 2 ) ) / ( M ^ 2 ) ) ) |
| 227 | 182 156 | eqeltrd | |- ( ph -> ( ( abs ` A ) ^ 2 ) e. CC ) |
| 228 | 183 157 | eqeltrd | |- ( ph -> ( ( abs ` B ) ^ 2 ) e. CC ) |
| 229 | 227 228 | addcld | |- ( ph -> ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) e. CC ) |
| 230 | 6 229 | eqeltrid | |- ( ph -> X e. CC ) |
| 231 | 189 160 | eqeltrd | |- ( ph -> Y e. CC ) |
| 232 | 230 195 231 195 196 196 | divmuldivd | |- ( ph -> ( ( X / M ) x. ( Y / M ) ) = ( ( X x. Y ) / ( M x. M ) ) ) |
| 233 | 195 | sqvald | |- ( ph -> ( M ^ 2 ) = ( M x. M ) ) |
| 234 | 233 | oveq2d | |- ( ph -> ( ( X x. Y ) / ( M ^ 2 ) ) = ( ( X x. Y ) / ( M x. M ) ) ) |
| 235 | 232 234 | eqtr4d | |- ( ph -> ( ( X / M ) x. ( Y / M ) ) = ( ( X x. Y ) / ( M ^ 2 ) ) ) |
| 236 | 194 226 235 | 3eqtr4d | |- ( ph -> ( ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) + ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) ) = ( ( X / M ) x. ( Y / M ) ) ) |
| 237 | 230 55 | nncand | |- ( ph -> ( X - ( X - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ) = ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) |
| 238 | 156 157 32 54 | addsub4d | |- ( ph -> ( ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) = ( ( ( A x. ( * ` A ) ) - ( ( * ` A ) x. C ) ) + ( ( B x. ( * ` B ) ) - ( B x. ( * ` D ) ) ) ) ) |
| 239 | 185 | oveq1d | |- ( ph -> ( X - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) = ( ( ( A x. ( * ` A ) ) + ( B x. ( * ` B ) ) ) - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ) |
| 240 | 31 13 15 | subdid | |- ( ph -> ( ( * ` A ) x. ( A - C ) ) = ( ( ( * ` A ) x. A ) - ( ( * ` A ) x. C ) ) ) |
| 241 | 31 13 | mulcomd | |- ( ph -> ( ( * ` A ) x. A ) = ( A x. ( * ` A ) ) ) |
| 242 | 241 | oveq1d | |- ( ph -> ( ( ( * ` A ) x. A ) - ( ( * ` A ) x. C ) ) = ( ( A x. ( * ` A ) ) - ( ( * ` A ) x. C ) ) ) |
| 243 | 240 242 | eqtrd | |- ( ph -> ( ( * ` A ) x. ( A - C ) ) = ( ( A x. ( * ` A ) ) - ( ( * ` A ) x. C ) ) ) |
| 244 | cjsub | |- ( ( B e. CC /\ D e. CC ) -> ( * ` ( B - D ) ) = ( ( * ` B ) - ( * ` D ) ) ) |
|
| 245 | 22 24 244 | syl2anc | |- ( ph -> ( * ` ( B - D ) ) = ( ( * ` B ) - ( * ` D ) ) ) |
| 246 | 245 | oveq2d | |- ( ph -> ( B x. ( * ` ( B - D ) ) ) = ( B x. ( ( * ` B ) - ( * ` D ) ) ) ) |
| 247 | 22 33 38 | subdid | |- ( ph -> ( B x. ( ( * ` B ) - ( * ` D ) ) ) = ( ( B x. ( * ` B ) ) - ( B x. ( * ` D ) ) ) ) |
| 248 | 246 247 | eqtrd | |- ( ph -> ( B x. ( * ` ( B - D ) ) ) = ( ( B x. ( * ` B ) ) - ( B x. ( * ` D ) ) ) ) |
| 249 | 243 248 | oveq12d | |- ( ph -> ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) = ( ( ( A x. ( * ` A ) ) - ( ( * ` A ) x. C ) ) + ( ( B x. ( * ` B ) ) - ( B x. ( * ` D ) ) ) ) ) |
| 250 | 238 239 249 | 3eqtr4d | |- ( ph -> ( X - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) = ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) ) |
| 251 | 250 | oveq2d | |- ( ph -> ( X - ( X - ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) ) ) = ( X - ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) ) ) |
| 252 | 237 251 | eqtr3d | |- ( ph -> ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) = ( X - ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) ) ) |
| 253 | 252 | oveq1d | |- ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) = ( ( X - ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) ) / M ) ) |
| 254 | 13 15 | subcld | |- ( ph -> ( A - C ) e. CC ) |
| 255 | 31 254 | mulcld | |- ( ph -> ( ( * ` A ) x. ( A - C ) ) e. CC ) |
| 256 | 22 24 | subcld | |- ( ph -> ( B - D ) e. CC ) |
| 257 | 256 | cjcld | |- ( ph -> ( * ` ( B - D ) ) e. CC ) |
| 258 | 22 257 | mulcld | |- ( ph -> ( B x. ( * ` ( B - D ) ) ) e. CC ) |
| 259 | 255 258 | addcld | |- ( ph -> ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) e. CC ) |
| 260 | 230 259 195 196 | divsubdird | |- ( ph -> ( ( X - ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) ) / M ) = ( ( X / M ) - ( ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) / M ) ) ) |
| 261 | 255 258 195 196 | divdird | |- ( ph -> ( ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) / M ) = ( ( ( ( * ` A ) x. ( A - C ) ) / M ) + ( ( B x. ( * ` ( B - D ) ) ) / M ) ) ) |
| 262 | 31 254 195 196 | divassd | |- ( ph -> ( ( ( * ` A ) x. ( A - C ) ) / M ) = ( ( * ` A ) x. ( ( A - C ) / M ) ) ) |
| 263 | 22 257 195 196 | divassd | |- ( ph -> ( ( B x. ( * ` ( B - D ) ) ) / M ) = ( B x. ( ( * ` ( B - D ) ) / M ) ) ) |
| 264 | 256 195 196 | cjdivd | |- ( ph -> ( * ` ( ( B - D ) / M ) ) = ( ( * ` ( B - D ) ) / ( * ` M ) ) ) |
| 265 | 198 | cjred | |- ( ph -> ( * ` M ) = M ) |
| 266 | 265 | oveq2d | |- ( ph -> ( ( * ` ( B - D ) ) / ( * ` M ) ) = ( ( * ` ( B - D ) ) / M ) ) |
| 267 | 264 266 | eqtrd | |- ( ph -> ( * ` ( ( B - D ) / M ) ) = ( ( * ` ( B - D ) ) / M ) ) |
| 268 | 267 | oveq2d | |- ( ph -> ( B x. ( * ` ( ( B - D ) / M ) ) ) = ( B x. ( ( * ` ( B - D ) ) / M ) ) ) |
| 269 | 263 268 | eqtr4d | |- ( ph -> ( ( B x. ( * ` ( B - D ) ) ) / M ) = ( B x. ( * ` ( ( B - D ) / M ) ) ) ) |
| 270 | 262 269 | oveq12d | |- ( ph -> ( ( ( ( * ` A ) x. ( A - C ) ) / M ) + ( ( B x. ( * ` ( B - D ) ) ) / M ) ) = ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) ) |
| 271 | 261 270 | eqtrd | |- ( ph -> ( ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) / M ) = ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) ) |
| 272 | 271 | oveq2d | |- ( ph -> ( ( X / M ) - ( ( ( ( * ` A ) x. ( A - C ) ) + ( B x. ( * ` ( B - D ) ) ) ) / M ) ) = ( ( X / M ) - ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) ) ) |
| 273 | 253 260 272 | 3eqtrd | |- ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) = ( ( X / M ) - ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) ) ) |
| 274 | 11 | nn0zd | |- ( ph -> ( X / M ) e. ZZ ) |
| 275 | zgz | |- ( ( X / M ) e. ZZ -> ( X / M ) e. Z[i] ) |
|
| 276 | 274 275 | syl | |- ( ph -> ( X / M ) e. Z[i] ) |
| 277 | gzcjcl | |- ( A e. Z[i] -> ( * ` A ) e. Z[i] ) |
|
| 278 | 2 277 | syl | |- ( ph -> ( * ` A ) e. Z[i] ) |
| 279 | gzmulcl | |- ( ( ( * ` A ) e. Z[i] /\ ( ( A - C ) / M ) e. Z[i] ) -> ( ( * ` A ) x. ( ( A - C ) / M ) ) e. Z[i] ) |
|
| 280 | 278 9 279 | syl2anc | |- ( ph -> ( ( * ` A ) x. ( ( A - C ) / M ) ) e. Z[i] ) |
| 281 | gzcjcl | |- ( ( ( B - D ) / M ) e. Z[i] -> ( * ` ( ( B - D ) / M ) ) e. Z[i] ) |
|
| 282 | 10 281 | syl | |- ( ph -> ( * ` ( ( B - D ) / M ) ) e. Z[i] ) |
| 283 | gzmulcl | |- ( ( B e. Z[i] /\ ( * ` ( ( B - D ) / M ) ) e. Z[i] ) -> ( B x. ( * ` ( ( B - D ) / M ) ) ) e. Z[i] ) |
|
| 284 | 3 282 283 | syl2anc | |- ( ph -> ( B x. ( * ` ( ( B - D ) / M ) ) ) e. Z[i] ) |
| 285 | gzaddcl | |- ( ( ( ( * ` A ) x. ( ( A - C ) / M ) ) e. Z[i] /\ ( B x. ( * ` ( ( B - D ) / M ) ) ) e. Z[i] ) -> ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) e. Z[i] ) |
|
| 286 | 280 284 285 | syl2anc | |- ( ph -> ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) e. Z[i] ) |
| 287 | gzsubcl | |- ( ( ( X / M ) e. Z[i] /\ ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) e. Z[i] ) -> ( ( X / M ) - ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) ) e. Z[i] ) |
|
| 288 | 276 286 287 | syl2anc | |- ( ph -> ( ( X / M ) - ( ( ( * ` A ) x. ( ( A - C ) / M ) ) + ( B x. ( * ` ( ( B - D ) / M ) ) ) ) ) e. Z[i] ) |
| 289 | 273 288 | eqeltrd | |- ( ph -> ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) e. Z[i] ) |
| 290 | 254 | cjcld | |- ( ph -> ( * ` ( A - C ) ) e. CC ) |
| 291 | 22 290 | mulcld | |- ( ph -> ( B x. ( * ` ( A - C ) ) ) e. CC ) |
| 292 | 31 256 | mulcld | |- ( ph -> ( ( * ` A ) x. ( B - D ) ) e. CC ) |
| 293 | 291 292 195 196 | divsubdird | |- ( ph -> ( ( ( B x. ( * ` ( A - C ) ) ) - ( ( * ` A ) x. ( B - D ) ) ) / M ) = ( ( ( B x. ( * ` ( A - C ) ) ) / M ) - ( ( ( * ` A ) x. ( B - D ) ) / M ) ) ) |
| 294 | cjsub | |- ( ( A e. CC /\ C e. CC ) -> ( * ` ( A - C ) ) = ( ( * ` A ) - ( * ` C ) ) ) |
|
| 295 | 13 15 294 | syl2anc | |- ( ph -> ( * ` ( A - C ) ) = ( ( * ` A ) - ( * ` C ) ) ) |
| 296 | 295 | oveq2d | |- ( ph -> ( B x. ( * ` ( A - C ) ) ) = ( B x. ( ( * ` A ) - ( * ` C ) ) ) ) |
| 297 | 22 31 36 | subdid | |- ( ph -> ( B x. ( ( * ` A ) - ( * ` C ) ) ) = ( ( B x. ( * ` A ) ) - ( B x. ( * ` C ) ) ) ) |
| 298 | 296 297 | eqtrd | |- ( ph -> ( B x. ( * ` ( A - C ) ) ) = ( ( B x. ( * ` A ) ) - ( B x. ( * ` C ) ) ) ) |
| 299 | 31 22 24 | subdid | |- ( ph -> ( ( * ` A ) x. ( B - D ) ) = ( ( ( * ` A ) x. B ) - ( ( * ` A ) x. D ) ) ) |
| 300 | 31 22 | mulcomd | |- ( ph -> ( ( * ` A ) x. B ) = ( B x. ( * ` A ) ) ) |
| 301 | 300 | oveq1d | |- ( ph -> ( ( ( * ` A ) x. B ) - ( ( * ` A ) x. D ) ) = ( ( B x. ( * ` A ) ) - ( ( * ` A ) x. D ) ) ) |
| 302 | 299 301 | eqtrd | |- ( ph -> ( ( * ` A ) x. ( B - D ) ) = ( ( B x. ( * ` A ) ) - ( ( * ` A ) x. D ) ) ) |
| 303 | 298 302 | oveq12d | |- ( ph -> ( ( B x. ( * ` ( A - C ) ) ) - ( ( * ` A ) x. ( B - D ) ) ) = ( ( ( B x. ( * ` A ) ) - ( B x. ( * ` C ) ) ) - ( ( B x. ( * ` A ) ) - ( ( * ` A ) x. D ) ) ) ) |
| 304 | 22 31 | mulcld | |- ( ph -> ( B x. ( * ` A ) ) e. CC ) |
| 305 | 304 37 105 | nnncan1d | |- ( ph -> ( ( ( B x. ( * ` A ) ) - ( B x. ( * ` C ) ) ) - ( ( B x. ( * ` A ) ) - ( ( * ` A ) x. D ) ) ) = ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) |
| 306 | 303 305 | eqtrd | |- ( ph -> ( ( B x. ( * ` ( A - C ) ) ) - ( ( * ` A ) x. ( B - D ) ) ) = ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) ) |
| 307 | 306 | oveq1d | |- ( ph -> ( ( ( B x. ( * ` ( A - C ) ) ) - ( ( * ` A ) x. ( B - D ) ) ) / M ) = ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) |
| 308 | 293 307 | eqtr3d | |- ( ph -> ( ( ( B x. ( * ` ( A - C ) ) ) / M ) - ( ( ( * ` A ) x. ( B - D ) ) / M ) ) = ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) |
| 309 | 22 290 195 196 | divassd | |- ( ph -> ( ( B x. ( * ` ( A - C ) ) ) / M ) = ( B x. ( ( * ` ( A - C ) ) / M ) ) ) |
| 310 | 254 195 196 | cjdivd | |- ( ph -> ( * ` ( ( A - C ) / M ) ) = ( ( * ` ( A - C ) ) / ( * ` M ) ) ) |
| 311 | 265 | oveq2d | |- ( ph -> ( ( * ` ( A - C ) ) / ( * ` M ) ) = ( ( * ` ( A - C ) ) / M ) ) |
| 312 | 310 311 | eqtrd | |- ( ph -> ( * ` ( ( A - C ) / M ) ) = ( ( * ` ( A - C ) ) / M ) ) |
| 313 | 312 | oveq2d | |- ( ph -> ( B x. ( * ` ( ( A - C ) / M ) ) ) = ( B x. ( ( * ` ( A - C ) ) / M ) ) ) |
| 314 | 309 313 | eqtr4d | |- ( ph -> ( ( B x. ( * ` ( A - C ) ) ) / M ) = ( B x. ( * ` ( ( A - C ) / M ) ) ) ) |
| 315 | 31 256 195 196 | divassd | |- ( ph -> ( ( ( * ` A ) x. ( B - D ) ) / M ) = ( ( * ` A ) x. ( ( B - D ) / M ) ) ) |
| 316 | 314 315 | oveq12d | |- ( ph -> ( ( ( B x. ( * ` ( A - C ) ) ) / M ) - ( ( ( * ` A ) x. ( B - D ) ) / M ) ) = ( ( B x. ( * ` ( ( A - C ) / M ) ) ) - ( ( * ` A ) x. ( ( B - D ) / M ) ) ) ) |
| 317 | 308 316 | eqtr3d | |- ( ph -> ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) = ( ( B x. ( * ` ( ( A - C ) / M ) ) ) - ( ( * ` A ) x. ( ( B - D ) / M ) ) ) ) |
| 318 | gzcjcl | |- ( ( ( A - C ) / M ) e. Z[i] -> ( * ` ( ( A - C ) / M ) ) e. Z[i] ) |
|
| 319 | 9 318 | syl | |- ( ph -> ( * ` ( ( A - C ) / M ) ) e. Z[i] ) |
| 320 | gzmulcl | |- ( ( B e. Z[i] /\ ( * ` ( ( A - C ) / M ) ) e. Z[i] ) -> ( B x. ( * ` ( ( A - C ) / M ) ) ) e. Z[i] ) |
|
| 321 | 3 319 320 | syl2anc | |- ( ph -> ( B x. ( * ` ( ( A - C ) / M ) ) ) e. Z[i] ) |
| 322 | gzmulcl | |- ( ( ( * ` A ) e. Z[i] /\ ( ( B - D ) / M ) e. Z[i] ) -> ( ( * ` A ) x. ( ( B - D ) / M ) ) e. Z[i] ) |
|
| 323 | 278 10 322 | syl2anc | |- ( ph -> ( ( * ` A ) x. ( ( B - D ) / M ) ) e. Z[i] ) |
| 324 | gzsubcl | |- ( ( ( B x. ( * ` ( ( A - C ) / M ) ) ) e. Z[i] /\ ( ( * ` A ) x. ( ( B - D ) / M ) ) e. Z[i] ) -> ( ( B x. ( * ` ( ( A - C ) / M ) ) ) - ( ( * ` A ) x. ( ( B - D ) / M ) ) ) e. Z[i] ) |
|
| 325 | 321 323 324 | syl2anc | |- ( ph -> ( ( B x. ( * ` ( ( A - C ) / M ) ) ) - ( ( * ` A ) x. ( ( B - D ) / M ) ) ) e. Z[i] ) |
| 326 | 317 325 | eqeltrd | |- ( ph -> ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) e. Z[i] ) |
| 327 | 1 | 4sqlem4a | |- ( ( ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) e. Z[i] /\ ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) e. Z[i] ) -> ( ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) + ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) ) e. S ) |
| 328 | 289 326 327 | syl2anc | |- ( ph -> ( ( ( abs ` ( ( ( ( * ` A ) x. C ) + ( B x. ( * ` D ) ) ) / M ) ) ^ 2 ) + ( ( abs ` ( ( ( ( * ` A ) x. D ) - ( B x. ( * ` C ) ) ) / M ) ) ^ 2 ) ) e. S ) |
| 329 | 236 328 | eqeltrrd | |- ( ph -> ( ( X / M ) x. ( Y / M ) ) e. S ) |