This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 4sqlem5.3 | |- ( ph -> M e. NN ) |
||
| 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| Assertion | 4sqlem5 | |- ( ph -> ( B e. ZZ /\ ( ( A - B ) / M ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 2 | 4sqlem5.3 | |- ( ph -> M e. NN ) |
|
| 3 | 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 4 | 1 | zcnd | |- ( ph -> A e. CC ) |
| 5 | 1 | zred | |- ( ph -> A e. RR ) |
| 6 | 2 | nnred | |- ( ph -> M e. RR ) |
| 7 | 6 | rehalfcld | |- ( ph -> ( M / 2 ) e. RR ) |
| 8 | 5 7 | readdcld | |- ( ph -> ( A + ( M / 2 ) ) e. RR ) |
| 9 | 2 | nnrpd | |- ( ph -> M e. RR+ ) |
| 10 | 8 9 | modcld | |- ( ph -> ( ( A + ( M / 2 ) ) mod M ) e. RR ) |
| 11 | 10 | recnd | |- ( ph -> ( ( A + ( M / 2 ) ) mod M ) e. CC ) |
| 12 | 7 | recnd | |- ( ph -> ( M / 2 ) e. CC ) |
| 13 | 11 12 | subcld | |- ( ph -> ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) e. CC ) |
| 14 | 3 13 | eqeltrid | |- ( ph -> B e. CC ) |
| 15 | 4 14 | nncand | |- ( ph -> ( A - ( A - B ) ) = B ) |
| 16 | 4 14 | subcld | |- ( ph -> ( A - B ) e. CC ) |
| 17 | 6 | recnd | |- ( ph -> M e. CC ) |
| 18 | 2 | nnne0d | |- ( ph -> M =/= 0 ) |
| 19 | 16 17 18 | divcan1d | |- ( ph -> ( ( ( A - B ) / M ) x. M ) = ( A - B ) ) |
| 20 | 3 | oveq2i | |- ( A - B ) = ( A - ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ) |
| 21 | 4 11 12 | subsub3d | |- ( ph -> ( A - ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ) = ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) ) |
| 22 | 20 21 | eqtrid | |- ( ph -> ( A - B ) = ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) ) |
| 23 | 22 | oveq1d | |- ( ph -> ( ( A - B ) / M ) = ( ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) / M ) ) |
| 24 | moddifz | |- ( ( ( A + ( M / 2 ) ) e. RR /\ M e. RR+ ) -> ( ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) / M ) e. ZZ ) |
|
| 25 | 8 9 24 | syl2anc | |- ( ph -> ( ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) / M ) e. ZZ ) |
| 26 | 23 25 | eqeltrd | |- ( ph -> ( ( A - B ) / M ) e. ZZ ) |
| 27 | 2 | nnzd | |- ( ph -> M e. ZZ ) |
| 28 | 26 27 | zmulcld | |- ( ph -> ( ( ( A - B ) / M ) x. M ) e. ZZ ) |
| 29 | 19 28 | eqeltrrd | |- ( ph -> ( A - B ) e. ZZ ) |
| 30 | 1 29 | zsubcld | |- ( ph -> ( A - ( A - B ) ) e. ZZ ) |
| 31 | 15 30 | eqeltrrd | |- ( ph -> B e. ZZ ) |
| 32 | 31 26 | jca | |- ( ph -> ( B e. ZZ /\ ( ( A - B ) / M ) e. ZZ ) ) |