This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer greater than or equal to 2 divides a prime number iff it is equal to it. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsprm | |- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( N || P <-> N = P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( z = N -> ( z || P <-> N || P ) ) |
|
| 2 | eqeq1 | |- ( z = N -> ( z = P <-> N = P ) ) |
|
| 3 | 1 2 | imbi12d | |- ( z = N -> ( ( z || P -> z = P ) <-> ( N || P -> N = P ) ) ) |
| 4 | 3 | rspcv | |- ( N e. ( ZZ>= ` 2 ) -> ( A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) -> ( N || P -> N = P ) ) ) |
| 5 | isprm4 | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) ) |
|
| 6 | 5 | simprbi | |- ( P e. Prime -> A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) |
| 7 | 4 6 | impel | |- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( N || P -> N = P ) ) |
| 8 | eluzelz | |- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
|
| 9 | iddvds | |- ( N e. ZZ -> N || N ) |
|
| 10 | breq2 | |- ( N = P -> ( N || N <-> N || P ) ) |
|
| 11 | 9 10 | syl5ibcom | |- ( N e. ZZ -> ( N = P -> N || P ) ) |
| 12 | 8 11 | syl | |- ( N e. ( ZZ>= ` 2 ) -> ( N = P -> N || P ) ) |
| 13 | 12 | adantr | |- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( N = P -> N || P ) ) |
| 14 | 7 13 | impbid | |- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( N || P <-> N = P ) ) |