This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 4sq.2 | |- ( ph -> N e. NN ) |
||
| 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
||
| 4sq.4 | |- ( ph -> P e. Prime ) |
||
| 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
||
| 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
||
| 4sq.7 | |- M = inf ( T , RR , < ) |
||
| 4sq.m | |- ( ph -> M e. ( ZZ>= ` 2 ) ) |
||
| 4sq.a | |- ( ph -> A e. ZZ ) |
||
| 4sq.b | |- ( ph -> B e. ZZ ) |
||
| 4sq.c | |- ( ph -> C e. ZZ ) |
||
| 4sq.d | |- ( ph -> D e. ZZ ) |
||
| 4sq.e | |- E = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.f | |- F = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.g | |- G = ( ( ( C + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.h | |- H = ( ( ( D + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.r | |- R = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) |
||
| 4sq.p | |- ( ph -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
||
| Assertion | 4sqlem14 | |- ( ph -> R e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 2 | 4sq.2 | |- ( ph -> N e. NN ) |
|
| 3 | 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
|
| 4 | 4sq.4 | |- ( ph -> P e. Prime ) |
|
| 5 | 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
|
| 6 | 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
|
| 7 | 4sq.7 | |- M = inf ( T , RR , < ) |
|
| 8 | 4sq.m | |- ( ph -> M e. ( ZZ>= ` 2 ) ) |
|
| 9 | 4sq.a | |- ( ph -> A e. ZZ ) |
|
| 10 | 4sq.b | |- ( ph -> B e. ZZ ) |
|
| 11 | 4sq.c | |- ( ph -> C e. ZZ ) |
|
| 12 | 4sq.d | |- ( ph -> D e. ZZ ) |
|
| 13 | 4sq.e | |- E = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 14 | 4sq.f | |- F = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 15 | 4sq.g | |- G = ( ( ( C + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 16 | 4sq.h | |- H = ( ( ( D + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 17 | 4sq.r | |- R = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) |
|
| 18 | 4sq.p | |- ( ph -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
|
| 19 | 6 | ssrab3 | |- T C_ NN |
| 20 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 21 | 19 20 | sseqtri | |- T C_ ( ZZ>= ` 1 ) |
| 22 | 1 2 3 4 5 6 7 | 4sqlem13 | |- ( ph -> ( T =/= (/) /\ M < P ) ) |
| 23 | 22 | simpld | |- ( ph -> T =/= (/) ) |
| 24 | infssuzcl | |- ( ( T C_ ( ZZ>= ` 1 ) /\ T =/= (/) ) -> inf ( T , RR , < ) e. T ) |
|
| 25 | 21 23 24 | sylancr | |- ( ph -> inf ( T , RR , < ) e. T ) |
| 26 | 7 25 | eqeltrid | |- ( ph -> M e. T ) |
| 27 | 19 26 | sselid | |- ( ph -> M e. NN ) |
| 28 | 27 | nnzd | |- ( ph -> M e. ZZ ) |
| 29 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 30 | 4 29 | syl | |- ( ph -> P e. ZZ ) |
| 31 | 28 30 | zmulcld | |- ( ph -> ( M x. P ) e. ZZ ) |
| 32 | 9 27 13 | 4sqlem5 | |- ( ph -> ( E e. ZZ /\ ( ( A - E ) / M ) e. ZZ ) ) |
| 33 | 32 | simpld | |- ( ph -> E e. ZZ ) |
| 34 | zsqcl2 | |- ( E e. ZZ -> ( E ^ 2 ) e. NN0 ) |
|
| 35 | 33 34 | syl | |- ( ph -> ( E ^ 2 ) e. NN0 ) |
| 36 | 10 27 14 | 4sqlem5 | |- ( ph -> ( F e. ZZ /\ ( ( B - F ) / M ) e. ZZ ) ) |
| 37 | 36 | simpld | |- ( ph -> F e. ZZ ) |
| 38 | zsqcl2 | |- ( F e. ZZ -> ( F ^ 2 ) e. NN0 ) |
|
| 39 | 37 38 | syl | |- ( ph -> ( F ^ 2 ) e. NN0 ) |
| 40 | 35 39 | nn0addcld | |- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. NN0 ) |
| 41 | 40 | nn0zd | |- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. ZZ ) |
| 42 | 11 27 15 | 4sqlem5 | |- ( ph -> ( G e. ZZ /\ ( ( C - G ) / M ) e. ZZ ) ) |
| 43 | 42 | simpld | |- ( ph -> G e. ZZ ) |
| 44 | zsqcl2 | |- ( G e. ZZ -> ( G ^ 2 ) e. NN0 ) |
|
| 45 | 43 44 | syl | |- ( ph -> ( G ^ 2 ) e. NN0 ) |
| 46 | 12 27 16 | 4sqlem5 | |- ( ph -> ( H e. ZZ /\ ( ( D - H ) / M ) e. ZZ ) ) |
| 47 | 46 | simpld | |- ( ph -> H e. ZZ ) |
| 48 | zsqcl2 | |- ( H e. ZZ -> ( H ^ 2 ) e. NN0 ) |
|
| 49 | 47 48 | syl | |- ( ph -> ( H ^ 2 ) e. NN0 ) |
| 50 | 45 49 | nn0addcld | |- ( ph -> ( ( G ^ 2 ) + ( H ^ 2 ) ) e. NN0 ) |
| 51 | 50 | nn0zd | |- ( ph -> ( ( G ^ 2 ) + ( H ^ 2 ) ) e. ZZ ) |
| 52 | 41 51 | zaddcld | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. ZZ ) |
| 53 | 31 52 | zsubcld | |- ( ph -> ( ( M x. P ) - ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) e. ZZ ) |
| 54 | dvdsmul1 | |- ( ( M e. ZZ /\ P e. ZZ ) -> M || ( M x. P ) ) |
|
| 55 | 28 30 54 | syl2anc | |- ( ph -> M || ( M x. P ) ) |
| 56 | zsqcl | |- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
|
| 57 | 9 56 | syl | |- ( ph -> ( A ^ 2 ) e. ZZ ) |
| 58 | zsqcl | |- ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) |
|
| 59 | 10 58 | syl | |- ( ph -> ( B ^ 2 ) e. ZZ ) |
| 60 | 57 59 | zaddcld | |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. ZZ ) |
| 61 | 60 41 | zsubcld | |- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) e. ZZ ) |
| 62 | zsqcl | |- ( C e. ZZ -> ( C ^ 2 ) e. ZZ ) |
|
| 63 | 11 62 | syl | |- ( ph -> ( C ^ 2 ) e. ZZ ) |
| 64 | zsqcl | |- ( D e. ZZ -> ( D ^ 2 ) e. ZZ ) |
|
| 65 | 12 64 | syl | |- ( ph -> ( D ^ 2 ) e. ZZ ) |
| 66 | 63 65 | zaddcld | |- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) e. ZZ ) |
| 67 | 66 51 | zsubcld | |- ( ph -> ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. ZZ ) |
| 68 | 35 | nn0zd | |- ( ph -> ( E ^ 2 ) e. ZZ ) |
| 69 | 57 68 | zsubcld | |- ( ph -> ( ( A ^ 2 ) - ( E ^ 2 ) ) e. ZZ ) |
| 70 | 39 | nn0zd | |- ( ph -> ( F ^ 2 ) e. ZZ ) |
| 71 | 59 70 | zsubcld | |- ( ph -> ( ( B ^ 2 ) - ( F ^ 2 ) ) e. ZZ ) |
| 72 | 9 27 13 | 4sqlem8 | |- ( ph -> M || ( ( A ^ 2 ) - ( E ^ 2 ) ) ) |
| 73 | 10 27 14 | 4sqlem8 | |- ( ph -> M || ( ( B ^ 2 ) - ( F ^ 2 ) ) ) |
| 74 | 28 69 71 72 73 | dvds2addd | |- ( ph -> M || ( ( ( A ^ 2 ) - ( E ^ 2 ) ) + ( ( B ^ 2 ) - ( F ^ 2 ) ) ) ) |
| 75 | 9 | zcnd | |- ( ph -> A e. CC ) |
| 76 | 75 | sqcld | |- ( ph -> ( A ^ 2 ) e. CC ) |
| 77 | 10 | zcnd | |- ( ph -> B e. CC ) |
| 78 | 77 | sqcld | |- ( ph -> ( B ^ 2 ) e. CC ) |
| 79 | 33 | zcnd | |- ( ph -> E e. CC ) |
| 80 | 79 | sqcld | |- ( ph -> ( E ^ 2 ) e. CC ) |
| 81 | 37 | zcnd | |- ( ph -> F e. CC ) |
| 82 | 81 | sqcld | |- ( ph -> ( F ^ 2 ) e. CC ) |
| 83 | 76 78 80 82 | addsub4d | |- ( ph -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = ( ( ( A ^ 2 ) - ( E ^ 2 ) ) + ( ( B ^ 2 ) - ( F ^ 2 ) ) ) ) |
| 84 | 74 83 | breqtrrd | |- ( ph -> M || ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
| 85 | 45 | nn0zd | |- ( ph -> ( G ^ 2 ) e. ZZ ) |
| 86 | 63 85 | zsubcld | |- ( ph -> ( ( C ^ 2 ) - ( G ^ 2 ) ) e. ZZ ) |
| 87 | 49 | nn0zd | |- ( ph -> ( H ^ 2 ) e. ZZ ) |
| 88 | 65 87 | zsubcld | |- ( ph -> ( ( D ^ 2 ) - ( H ^ 2 ) ) e. ZZ ) |
| 89 | 11 27 15 | 4sqlem8 | |- ( ph -> M || ( ( C ^ 2 ) - ( G ^ 2 ) ) ) |
| 90 | 12 27 16 | 4sqlem8 | |- ( ph -> M || ( ( D ^ 2 ) - ( H ^ 2 ) ) ) |
| 91 | 28 86 88 89 90 | dvds2addd | |- ( ph -> M || ( ( ( C ^ 2 ) - ( G ^ 2 ) ) + ( ( D ^ 2 ) - ( H ^ 2 ) ) ) ) |
| 92 | 11 | zcnd | |- ( ph -> C e. CC ) |
| 93 | 92 | sqcld | |- ( ph -> ( C ^ 2 ) e. CC ) |
| 94 | 12 | zcnd | |- ( ph -> D e. CC ) |
| 95 | 94 | sqcld | |- ( ph -> ( D ^ 2 ) e. CC ) |
| 96 | 43 | zcnd | |- ( ph -> G e. CC ) |
| 97 | 96 | sqcld | |- ( ph -> ( G ^ 2 ) e. CC ) |
| 98 | 47 | zcnd | |- ( ph -> H e. CC ) |
| 99 | 98 | sqcld | |- ( ph -> ( H ^ 2 ) e. CC ) |
| 100 | 93 95 97 99 | addsub4d | |- ( ph -> ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = ( ( ( C ^ 2 ) - ( G ^ 2 ) ) + ( ( D ^ 2 ) - ( H ^ 2 ) ) ) ) |
| 101 | 91 100 | breqtrrd | |- ( ph -> M || ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 102 | 28 61 67 84 101 | dvds2addd | |- ( ph -> M || ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) + ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) ) |
| 103 | 18 | oveq1d | |- ( ph -> ( ( M x. P ) - ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) = ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) - ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) ) |
| 104 | 76 78 | addcld | |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. CC ) |
| 105 | 93 95 | addcld | |- ( ph -> ( ( C ^ 2 ) + ( D ^ 2 ) ) e. CC ) |
| 106 | 80 82 | addcld | |- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. CC ) |
| 107 | 97 99 | addcld | |- ( ph -> ( ( G ^ 2 ) + ( H ^ 2 ) ) e. CC ) |
| 108 | 104 105 106 107 | addsub4d | |- ( ph -> ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) - ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) = ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) + ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) ) |
| 109 | 103 108 | eqtrd | |- ( ph -> ( ( M x. P ) - ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) = ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) + ( ( ( C ^ 2 ) + ( D ^ 2 ) ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) ) |
| 110 | 102 109 | breqtrrd | |- ( ph -> M || ( ( M x. P ) - ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) ) |
| 111 | 28 31 53 55 110 | dvds2subd | |- ( ph -> M || ( ( M x. P ) - ( ( M x. P ) - ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) ) ) |
| 112 | 27 | nncnd | |- ( ph -> M e. CC ) |
| 113 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 114 | 4 113 | syl | |- ( ph -> P e. NN ) |
| 115 | 114 | nncnd | |- ( ph -> P e. CC ) |
| 116 | 112 115 | mulcld | |- ( ph -> ( M x. P ) e. CC ) |
| 117 | 106 107 | addcld | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. CC ) |
| 118 | 116 117 | nncand | |- ( ph -> ( ( M x. P ) - ( ( M x. P ) - ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) ) = ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 119 | 111 118 | breqtrd | |- ( ph -> M || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 120 | 27 | nnne0d | |- ( ph -> M =/= 0 ) |
| 121 | 40 50 | nn0addcld | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. NN0 ) |
| 122 | 121 | nn0zd | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. ZZ ) |
| 123 | dvdsval2 | |- ( ( M e. ZZ /\ M =/= 0 /\ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. ZZ ) -> ( M || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) <-> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) e. ZZ ) ) |
|
| 124 | 28 120 122 123 | syl3anc | |- ( ph -> ( M || ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) <-> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) e. ZZ ) ) |
| 125 | 119 124 | mpbid | |- ( ph -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) e. ZZ ) |
| 126 | 121 | nn0red | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. RR ) |
| 127 | 121 | nn0ge0d | |- ( ph -> 0 <_ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 128 | 27 | nnred | |- ( ph -> M e. RR ) |
| 129 | 27 | nngt0d | |- ( ph -> 0 < M ) |
| 130 | divge0 | |- ( ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. RR /\ 0 <_ ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) /\ ( M e. RR /\ 0 < M ) ) -> 0 <_ ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) ) |
|
| 131 | 126 127 128 129 130 | syl22anc | |- ( ph -> 0 <_ ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) ) |
| 132 | elnn0z | |- ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) e. NN0 <-> ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) e. ZZ /\ 0 <_ ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) ) ) |
|
| 133 | 125 131 132 | sylanbrc | |- ( ph -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) e. NN0 ) |
| 134 | 17 133 | eqeltrid | |- ( ph -> R e. NN0 ) |